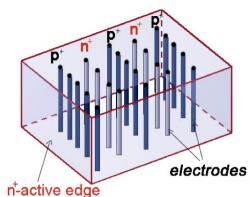
Call Rivelatori CSNV

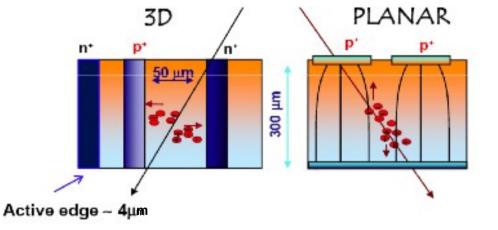
ACTIVE
ATLAS and CMS Towards Innovative Pixels
(ATLAS and CMS Together)

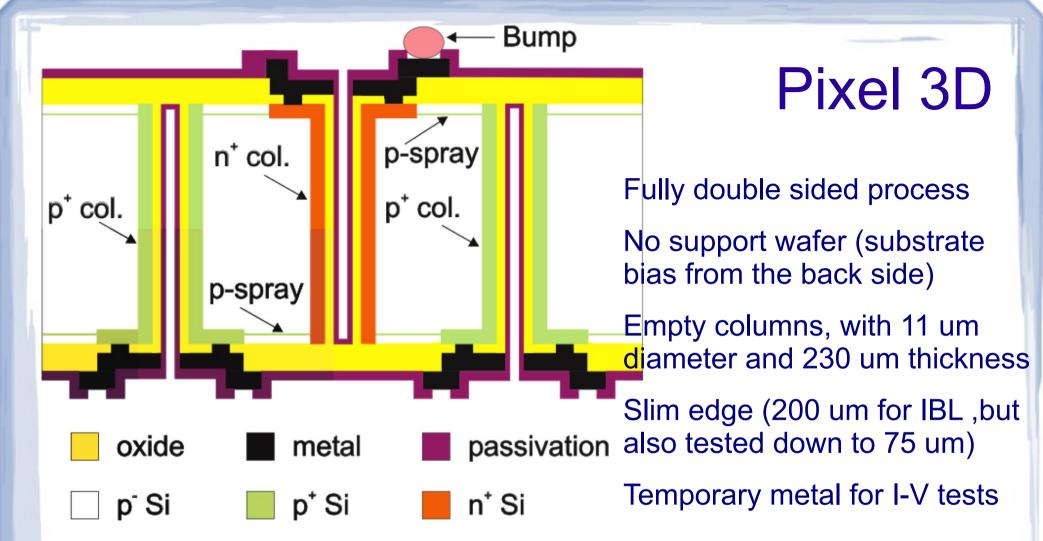
Pixel 3D

- Obiettivi del progetto:
- Sviluppo core technologies per Pixel (Innermost Pixel Layer) upgrades a HL-LHC:
- Pixel più piccoli, rivelatori sottili capaci di resistere ad alti flussi di radiazione e con poco materiale (problematiche legate alla ricostruzione delle tracce).



Sensori 3D


I sensori 3D sono una matrice di elettrodi a colonna [r \sim 5µm] con drogaggio p e n, che penetrano perpendicolarmente alla superficie nel substrato di silicio.

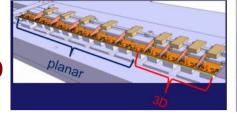

3D PRO:

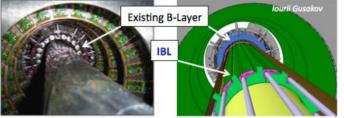
- La distanza tra elettrodi NON dipende più dallo spessore del substrato:
 - bassa tensione di svuotamento
 - raccolta di carica molto veloce
 - bassa probabilità di intrappolamento
 (alta resistenza alla radiazione)
- Si può implementare anche l' "Active Edge concept" (area morta ridotta a pochi µm dal bordo del sensore)
- Risoluzione angolare confrontabile con I rivelatori planari 3D CONTRO:
 - Tecnologia compessa (ma comunque OK per IBL)
 - Capacità elettrica maggiore rispetto al planare (criticità per il rumore elettronico)

Electrodes are processed inside the detector bulk instead of being implanted on the wafer's surface.

Main results

Tested with FE-I3, FE-I4 and CMS ROCs (laboratory and beam test) Qualified for ATLAS IBL: >98% efficiency for 15° tracks at 160 V after $5x10^{15}$ n_{eq}/cm^2

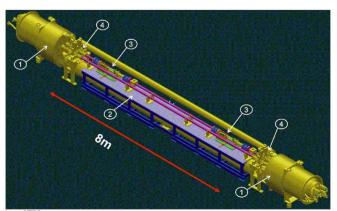

IBL production at FBK with ~50% yield Deep understanding of sensor behavior

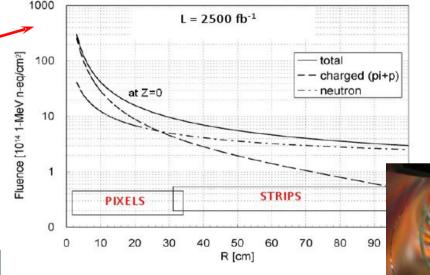


3Ds: APPLICAZIONI A LHC

I 3D stanno emergendo come tra i più promettenti "tracking detectors" per i futuri upgrades a LHC

25% di ATLAS IBL sarà costituito da sensori 3D




Nuovi sensori rad-hard per HL-LHC CMS vertex detector

 $(L = 10^{35} cm^{-2} s^{-1})$

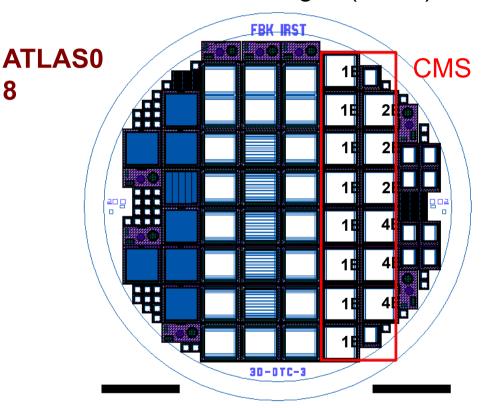
Dose equivalente ~ 10^{16} n_{eq}/cm² @ r = 5 cm

Pixel attuale riesce a funzionare fino a una fluenza di ~6x10¹⁴n_{eq}/cm²

HPS (Near Beam Proton Spectrometer - in approvazione per CMS)

Cruciale per questa applicazione: "radiation hardness" e "active edges"

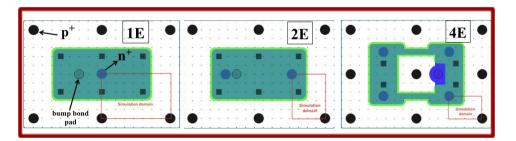
CMS 3D SENSORS A FBK


CMS sensore: 52*80 pixels

Dimensioni Pixel: 100*150 µm²

Colonne passanti

Wafer thickness: 200 µm Standard edges (1 mm)


Wafer thickness: 230 µm Slim edges (200 µm)

ATLASO 9 CMS

2 wafers bump-bonded (W8,W3)

1 wafers bump-bonded

Inter-electrode distance: 90 μm (1E), 62.5 μm (2E), 45 μm (4E)

Work Packages Principali

- Pixel 3D: 2x10¹⁶ neq cm⁻²s⁻¹, piccoli (1/3 of FE-I4 pixel size) con spessori di 100-150 μm, epitassiali o con wafer di supporto), active edge, moltiplicazione della carica.
- FBK Silicon foundry principale
- Bump-bonding: Sviluppo del BB per 100000 bumps/chip (anche il QC), rivelatori sottili (100µm) FE-l4 (size), Indium bumps. Il Bump-bonding è una tecnologia critica (esperienza IBL con IZM), ricerca di partner italiani (SELEX).
- Micro-channel cooling: tecnologia sviluppata in Italia per Super-B e NA62. È potentialmente molto interessante per applicazioni "low material budget" (Inner-layer). Micro-channels ricavati direttamente su silicio (FBK) oppure ricavati con materiale composito. Studio μ-channel con "evaporative cooling" CO₂.

Partecipanti

Institutes/ FTE

	BA	CS	Я	GE	MI	MIB	PI	TN	ТО	UD	Total
RIC/TEC	4	7	4	4	2	5	8	7	4	3	48
FTE	1.1	1.3	1.0	0.9	0.7	1.0	1.9	2.7	0.9	0.9	12.4

Sezione	Responsabile
BA	Donato Creanza
cs	Anna Mastroberardino
FI	Marco Meschini
GE	Giovanni Darbo (Resp. Naz.)
MI	Gianluca Alimonti
MIB	Mauro Dinardo
PI	Alberto Messineo
TN	Gian-Franco Dalla Betta
TO	Ada Solano
UD	Mario Paolo Giordani

Costi previsti

WP's Cost Envelopes

	Name		Cost	Note
				2 batches of 3D, 1 batch of planar, additional wafer processing,
WP1	Sensor design and production	€	195 800	raw wafers.
				Develop of technology 100'000 bumps + access to BB for sensor
WP2	Bump-bonding - process qualification	€	182 400	testing + electronic wafers + thinning + dummy wafer production
WP3	Micro-cooling	€	164 000	samples, processing, CO2 chiller
WP4	Module assembly & Test			PCB, tooling, irradiation, test beam support, lab tests (non
WP5	Irradiation & Test beam	€	200 000	inventariabile)
	Travel money	€	60 000	Contact to the firms, internal meetings, test beam & irradiation

€ 802 200

Preliminare, da confermare

Firenze is ACTIVE!

ESPERIENZA COMUNE al gruppo:

Rivelatori a strip di silicio;

CMS: integrazione (10 su 16 semi-layer), installazione e running del Tracker Inner Barrel

In particolare:

Civinini: rivelatori per Fisica Medica (PRIMA gr.5), simulazioni tracciatore Pixel CMS Fase 1 e Fase 2, Integrazione Rivelatori, Analisi Dati

D'Alessandro: Elettronica, FPGA, SiPM, Test rivelatori irraggiati, Campagna R&D sensori CMS HPK

Focardi: Bump Bonding, Sistemi Cooling, Power Supplies

Meschini: Test di Moduli a Microstrip, Test rivelatori irraggiati, Campagna R&D sensori CMS HPK,Trasmissione su Link Ottici

Paoletti: Sistema Alimentazione, Slow Control, Analisi Dati

- COMUNQUE C'E' INTERESSE E COINVOLGIMENTO DI TUTTO IL GRUPPO
- INTERESSI E POSSIBILI CONTRIBUTI

ATTIVITA' TEST: BARE PIXEL SENSORS, PIXEL CONNESSI AL ROC, TEST SENSORI IRRAGGIATI, IRRAGGIAMENTI SPECIFICI (LNS?), ANALISI, PARTECIPAZIONE TEST BEAM, BUMP BONDING

EQUIPAGGIAMENTI UTILI: CLEAN ROOM, MACCHINA MISURA 3D, WIRE BONDING FACILITY, CAMERE CLIMATICHE, TECNICI ESPERTI

PERCENTUALI E RICHIESTE

SERVIZIO ELETTRONICA:

1 MESE addizionale alle richieste CMS (3 mesi in tutto), PER SCHEDE DI SUPPORTO AL PIXEL READ-OUT

TECNICI CMS:

ENRICO SCARLINI 80%, MIRKO BRIANZI 80% ATTIVITÀ CAMERA PULITA E PREPARAZIONE PROTOTIPI

RICHIESTE FINANZIARIE:

ANCORA DA STABILIRE NEL DETTAGLIO ALL'INTERNO DELL'ENVELOPE GLOBALE.

Cognome	Percentuale FTE
Meschini	30
D'Alessandro	10
Focardi	30
Paoletti	30
Civinini	partecipazione di fatto, senza percentuale