

Il futuro di LHC

Paolo Giacomelli (INFN Bologna) Giovedí, 4 Luglio, 2013

Outline

- Evoluzione futura di LHC e HL-LHC
- Programma di fisica
- Upgrades dei rivelatori CMS e ATLAS
- Misure di precisione del bosone di Higgs
- Decadimenti rari del bosone di Higgs
- Auto-accoppiamento del bosone di Higgs
- VV scattering
- Prospettive di SUSY
- Prospettive per fisica oltre il Modello Standard

<u>Nota</u>

Tratterò solo gli esperimenti ATLAS e CMS

Bologna, 04/07/2013

LHC e HL-LHC

LHC dopo LS1

Bologna, 04/07/2013

- Servono detectors e trigger ad alte prestazioni da basse fino ad alte scale di energia
 - Misure del bosone SM-like a 125 GeV
 - Ricerca di nuova fisica oltre al TeV
- Phase 1 Upgrade: due volte la luminosità di disegno di LHC
 - Pileup di eventi raggiunge ~50 collisioni per beam crossing (@ 25 ns)
 Fattore 5 di aumento delle frequenze di trigger rispetto al run del 2012
- Phase 2 Upgrade: 5x la luminosità di disegno di LHC
 - Pileup di eventi raggiunge ~140 collisioni per beam crossing (@ 25 ns)
 - Servono soluzioni per operare con altissime frequenze (10-15 x 2012), radiazione e pileup

ATLAS e CMS sono stati progettati per L= 1-2 x10³⁴ cm⁻²s⁻¹

Bologna, 04/07/2013

Pileup nel 2012

Peak: 37 pileup events

Design value **25 pileup events** (L=10³⁴, BX=25 ns)

Bologna, 04/07/2013

Programma di fisica

La scoperta di un bosone scalare SM-like con m_H~125 GeV definisce le priorità di fisica

- Con i dati di LHC 13/14 TeV fino al ~2022 (~300 fb⁻¹)
 - Misure delle proprietà del bosone di Higgs SM-like
 - massa, J^{PC}
 - accoppiamenti individuali con una precisione del 5-15%
 - Ricerca di nuova fisica ad una nuova scala di energie
 - SUSY
 - Exotica (fisica oltre il Modello Standard)
- Con i dati di HL-LHC a 14 TeV fino al ~2032 (~3000 fb⁻¹)
 - Misure di alta precisione del bosone di Higgs
 - Studi dei decadimenti rari del bosone di Higgs e degli autoaccoppiamenti
 - Studi di VV scattering
 - Caratterizzare eventuale Nuova Fisica scoperta durante la Phase 1 a 14 TeV

Bologna, 04/07/2013

CMS upgrade program

ME,

RE 4/2

HB/0/4

YB/B/3

HR/M/R

18/8/2

HΒ

EB

Pixel

YB/1/3

18/1/2

LS1 Projects

- Complete Muon coverage (ME,RE4)
- Improve muon operation, DT electronics
- Replace HCAL photo-detectors in Forward (new PMTs) and Outer (HPD→SiPMs)
- DAQ1→DAQ2

LS1

Phase 1 Upgrades

- New Pixel detector, HCAL electronics and L1-Trigger upgrade
- GEMs for forward muon det. under review
- Preparatory work during LS1
- New beam pipe for pixel upgrade
- Install test slices of pixel, HCAL, L1-trigger
- Install ECAL optical splitters for L1-trigger

Phase 2: being defined now

• Tracker replacement, L1 Track-Trigger

LS3

HB/7/L

YB/2/3

HB/2/3

18/2/2

- Forward: calorimetry, muons and tracking
- High precision timing for PU mitigation
- Further Trigger upgrade

ME 1

• Further DAQ upgrade

ATLAS detector

ATLAS upgrade program

ATLAS has devised a 3 stage upgrade program

- New insertable pixel b-layer (IBL)
- New AI beam pipe
- New pixel services
- Complete installation of EE muon chambers
- New evaporative cooling plant
- Consolidation of detector services
- Specific neutron shielding
- Upgrade magnet cryogenics
 Bologna, 04/07/2013

- New Small Wheel (nSW) for the forward muon
 Spectrometer
- High Precision Calorimeter L1-Trigger
- Fast TracKing (FTK) for L2trigger
- Topological L1-trigger processors
- New forward diffractive physics detectors (AFP)

Il futuro di LHC - Paolo Giacomelli

- Completely new tracking detector
- Calorimeter electronics upgrades
- Upgrade part of the muon system
- Possible L1-trigger track trigger
- Possible changes to the forward calorimeters

From M. Diemoz

Misure dell'Higgs con 300 fb⁻¹

- Si assume che un detector upgraded mantenga le prestazioni del 2012
- Tre scenari:
 - Scenario 1: stesse incertezze sistematiche del 2012
 - Scenario 2: incertezza teorica ridotta di un fattore 2, altre incertezze rinormalizzate con $1/\sqrt{L}$
 - Scenario 3: stesse incert. exp. del 2012, nessuna incertezza teorica

CMS Projection

Accoppiamenti dell'Higgs @300 fb⁻¹

- Tre scenari:
 - Scenario 1: stesse incertezze sistematiche del 2012
 - Scenario 2: incertezza teorica ridotta di un fattore 2, altre incertezze ri-normalizzate con $1/\sqrt{L}$
 - Scenario 3: stesse incert. exp. del 2012, nessuna incertezza teorica

Bologna, 04/07/2013

HL-LHC accoppiamenti @3000 fb⁻¹

- Estrapolazione di due ordini di grandezza a luminosità più elevate
 - e' soggetta a grandi incertezze
 - gli scenari 1 e 2 si possono considerare come limite superiore ed inferiore
- Esperienze al LEP e Tevatron mostrano che uno scaling $1/\sqrt{L}$ non e' irreale

 Con 3000 fb⁻¹ gli accoppiamenti del bosone di Higgs possono essere determinati con alta precisione (1-4%)

CMS	Uncertainty (%)						
Coupling	$3000 {\rm ~fb^{-1}}$						
	Scenario 1	Scenario 2					
κ_{γ}	5.4	1.5					
κ_V	4.5	1.0					
κ_g	7.5	2.7					
κ_b	11	2.7					
κ_t	8.0	3.9					
$\kappa_{ au}$	5.4	2.0					

Scenario 1: systematics as in 2012 Scenario 2: theory syst. scaled by a factor $\frac{1}{2}$, other systematics scaled by $1/\sqrt{L}$

Decadimenti rari del bosone di Higgs

 $H \rightarrow Z(ee)\gamma$

Wednesday, 3 July 13

Higgs boson self-coupling

ΗΗ→bδγγ

Con L=3000 fb⁻¹ si otterrà una sensibilità di 3σ per esperimento

Bologna, 04/07/2013

Il futuro di LHC - Paolo Giacomelli

masse W, Z (→ gradi di libertà longitudinali)

derivano dal meccanismo di Higgs:

$$A(W_{L}^{+}W_{L}^{-} \to W_{L}^{+}W_{L}^{-}) \approx \frac{1}{v^{2}} \left(-s - t + \frac{s^{2}}{s - m_{H}^{2}} + \frac{t^{2}}{t - m_{H}^{2}} \right)$$

VV scattering is the smoking gun for EW Symmetry Breaking!

Taken from "Prospects for VV scattering: latest news" by S. Bolognesi (JHU)

talk at Implications of LHC results for TeV-Scale physics (March 2012)

Bologna, 04/07/2013

VV scattering come sonda per EWSB

VV Scattering spectrum, $\sigma(VV \rightarrow VV)$ vs M(VV)

e' la sonda fondamentale per verificare la natura del bosone di Higgs o per trovare un meccanismo alternativo dell'EW Symmetry Breaking

Ricerca di ulteriori risonanze nello spettro VBF

Adaptation from "Boson Boson scattering analysis" by A.Ballestrero (INFN Torino)

talk at First LHC to Terascale Workshop (Sept 2011):

Bologna, 04/07/2013

Bologna, 04/07/2013

Wednesday, 3 July 13

20

pp→ZZ+2j→4ℓ+2j channel

Sensibilità a risonanze anomale ZZ in Vector boson scattering

Bologna, 04/07/2013

SUSY

0

200

400

600

800

1000

1200

1400

Il futuro di LHC - Paolo Giacomelli

1600 1800

Mass scales [GeV]

SUSY reach at higher luminosity

Fisica oltre il Modello Standard

Fisica oltre lo SM a HL-LHC

6

7.8

7.6

- ATLAS e CMS hanno superato le previsioni nel primo run di presa dati a LHC.
- Questo ha portato alla scoperta di un nuovo bosone compatibile con il bosone di Higgs del Modello Standard.
- La nuova energia nel centro di massa prevista per il 2015 apre una nuova interessantissima finestra su fisica oltre il Modello Standard.
- Un ambizioso programma di upgrade dei rivelatori e' cominciato per assicurare il funzionamento nei futuri runs ad alta luminosità in condizioni sperimentalmente assai più difficili.
- HL-LHC permetterà di misurare con alta precisione le caratteristiche del nuovo bosone e di studiare fenomeni estremamente rari.

LHC ha un programma di fisica estremamente interessante per i prossimi 20 anni!

Bologna, 04/07/2013

Higgs memorabilia...

Il futuro di LHC - Paolo Giacomelli

Bologna, 04/07/2013

Backup

Paolo Giacomelli - INFN Bologna

Integrated luminosity in 2012

Integrated luminosity recorded in 2012: ~22 fb⁻¹

2011: L=~6 fb⁻¹

Excellent LHC performance and very high data-taking efficiency of the two detectors

Bologna, 04/07/2013

Upgrade challenges and recipe

Maintain low trigger thresholds, efficient particle and physics object reconstruction at high rate and pile-up

Need new technology R&Ds to:

- Increase granularity
- Increase data bandwidth
- Increase processing power
- Improve radiation hardness
- Minimize material in tracking devices

Bologna, 04/07/2013

Trigger challenge in 2012

Maintaining high trigger efficiency while keeping the trigger rate within budget was one of the biggest challenges of the CMS experiment in 2012

The experience obtained in 2012 with peak pileup of ~35 events gives us confidence for high-luminosity running post Long Shutdown 1

Trigger Cross-sections:

HLT CPU time:

linear with PU, no signs of runaway

Bologna, 04/07/2013

Pileup challenges

Reconstruction of hard collisions in high pileup environment requires detectors with very high granularity:

- efficient association of charged tracks to collision vertices
- reconstruction of charged and neutral particles in jets
- pileup neutrals corrected w/global energy density (ρ)

Physics with high pileup requires full particle flow reconstruction assuring:

- precise jet energy correction
- robust missing energy measurement
- efficient lepton isolation

Very efficient reconstruction code is needed to stay within computing budget

Bologna, 04/07/2013

From 2013 to HL-LHC

• From 30 to 3000 fb⁻¹: two orders of magnitude extrapolation in luminosity

To calculate physics projections at HL-LHC

Similar trigger and reconstruction peformances as in 2012

Need upgraded detectors to offset the much harsher LHC conditions and radiation damage

ATLAS and CMS have launched a comprehensive upgrade program

Bologna, 04/07/2013

Prospettive future di fisica a LHC - Paolo Giacomelli

Higgs boson couplings @3000 fb⁻¹

• With 3000 fb⁻¹ the couplings can be determined with high precision (a few %)

Bologna, 04/07/2013

Vector Boson Fusion (VBF)

Generic diagram for vector boson fusion (VBF) process

Signature: forward-backward "spectator" jets with very high energy

• Once the vector bosons decay, we have a six-fermion final state

- The full set of $qq \rightarrow 6$ fermions diagrams has to be considered
- In order to investigate EWSB, one has to isolate VV processes from all other six-fermion final states
 - Apply tight kinematic cuts

 $\begin{array}{l} \hline Typical kin. cuts \\ p_{T,j} > 20 \ GeV \quad |\eta_j| < 5 \quad p_T^{tag} > 30 \ GeV \quad |\eta_{j1} - \eta_{j2}| > 4.0 \\ \eta_{j1} \cdot \eta_{j2} < 0 \quad m_{jj} > 600 \ GeV \end{array}$

Semileptonic is most promising: reasonable signal yield

Number of events for 20 fb⁻¹ (fully MC based, no systematics, 14 TeV)

ATLAS	N sign.	N back.	CMS	N sign.	N back.		CMS	N sign.	N back.
500 GeV	6.2	16	500 GeV	337	20759		500 GeV	62	3415
800 GeV	13	17				ZV -> Iljj			
1.1 TeV	4.8	9.2	>1 TeV	45	3281		>1 TeV	5	348
	ATLAS 500 GeV 800 GeV 1.1 TeV	ATLAS N sign. 500 GeV 6.2 800 GeV 13 1.1 TeV 4.8	ATLASN sign.N back.500 GeV6.216800 GeV13171.1 TeV4.89.2	ATLAS N sign. N back. CMS 500 GeV 6.2 16 500 GeV 800 GeV 13 17 1.1 TeV 4.8 9.2 >1 TeV	ATLAS N sign. N back. CMS N sign. 500 GeV 6.2 16 500 GeV 337 800 GeV 13 17 4.8 9.2 >1 TeV 45	ATLAS N sign. N back. CMS N sign. N back. 500 GeV 6.2 16 500 GeV 337 20759 800 GeV 13 17 20759 20759 1.1 TeV 4.8 9.2 >1 TeV 45 3281	ATLAS N sign. N back. CMS N sign. N back. 500 GeV 6.2 16 337 20759 800 GeV 13 17 20759 ZV -> IIjj 1.1 TeV 4.8 9.2 >1 TeV 45 3281	ATLAS N sign. N back. CMS N sign. N back. CMS 500 GeV 6.2 16 337 20759 500 GeV 500 GeV 800 GeV 13 17 17 20759 ZV -> IIJJ 1.1 TeV 4.8 9.2 >1 TeV 45 3281 >1 TeV	ATLAS N sign. N back. CMS N sign. N back. CMS N sign. 500 GeV 6.2 16 500 GeV 337 20759 500 GeV 500 GeV 62 800 GeV 13 17 7 20759 ZV -> IIjj 62 1.1 TeV 4.8 9.2 >1 TeV 45 3281 >1 TeV 51 TeV 51

For recent inclusive Higgs search:

 more sophisticated analysis developed (btag categories, angular analyses, $m_{ii} = m_Z$ kinematic fit)

data driven background

Improved JES: m_{ii} reso from 20-25% to 10-15%

Bologna, 04/07/2013

SUSY reach at higher luminosity

LHC at 14 TeV expands the reach for SUSY particles to much higher masses. (HE-LHC at 33 TeV does it even more)

As expected, the gain with HL-LHC is more modest (~25%) in this case.

