QCD estrema con ALICE a LHC

12

1

1.000

6.8.4.1

TTY

1144

288

rea

BOLOGI

8 3 3 4

5.4.4.4

Roberto Preghenella Anniversario della scoperta dell'Higgs Bologna, 04/07/2013

66.66

1111

Heavy-ion collisions at the LHC

The CERN LHC can accelerate also lead ions:

Pb-Pb collisions @ $\sqrt{s} = 2.76$ **TeV per nucleon pair**

QCD matter @ high temperature and energy-density

is expected to undergo a phase transition

hadronic matter \Rightarrow deconfined state of quark and gluons

so far, a rich <u>ultrarelativistic heavy-ion programme</u> past: GSI-SIS (~ 2 GeV) BNL-AGS (~ 5 GeV) CERN-SPS (~ 20 GeV) first signals of new state of matter present: BNL-RHIC (~ 200 GeV) further evidence of deconfined partonic matter future: GSI-FAIR (~ 45 GeV) will study equation of state at high density $\rho_{\rm B}$

> evidence at RHIC for a liquid quark-gluon matter (sQGP) (Scientific American, May 2006)

QCD phase diagram

Heavy-ion collision and evolution

Analogies with the early universe

QGP experimental observables

properties of the bulk of the matter:				
dN _{ch} /dη	⇔	energy density ϵ		
chemical composition	⇔	chemical freeze-out		
hadron spectra	⇔	kinetic freeze-out		

electromagnetic probes:

thermal radiation \Rightarrow plasma temperature dilepton production \Rightarrow \bigwedge large background ("prompt" $\gamma, \pi^0 \rightarrow \gamma \gamma, \pi^0 \rightarrow e^+e^-\gamma)$

heavy-quark (c, b) and quarkonium production:

production	⇔	perturbative phenomenon
long life-time	⇔	live through thermalization phase
energy loss	⇔	probes the matter produced
J/ψ suppression	⇔	colour screening (deconfinement)

The ALICE experiment

The ALICE detector

The ALICE detector

The ALICE detector

ALICE main features

- particle identification (all known techniques)
- excellent vertexing capability
- extremely low-mass tracker (~10% of X₀)
- efficient low-momentum tracking (down to ~100 MeV/c)
- particle detection over large rapidity range
- quarkonia detection down to $p_{\perp} = 0$

Particle-identification example: TOF

Particle-identification example: TOF

Low-p₊ hadron production in Pb-Pb

Hadron abundances in A-A collisions

Hadron yields and ratios in Pb-Pb

High-p₊ hadron production

Identified-particle p_{T} spectra measured over a wide momentum range in pp $\sqrt{s} = 0.9, 2.76, 7$ TeV

and in Pb-Pb \sqrt{s}_{NN} = 2.76 TeV

Baryon-to-meson ratio: p/π

Enhancement of the baryon-to-meson ratio at intermediate p_{τ} (3–7 GeV/c) p/ π ratio at $p_{\tau} \approx$ 3 GeV/c in most central (0-5%) Pb-Pb is ~3x higher than in pp \rightarrow seems to be a bulk effect: recombination, radial flow?

For p_{T} larger than ~10 GeV/c the ratio goes back to "normal" pp value parton fragmentation (jet chemistry) not modified by the medium

PID in jet structures

Pb-Pb Studied in 2-particle $\Delta \eta - \Delta \phi$ correlations **Pb-Pb**, $\$ s_{NN} = 2.76TeV, 0-10% central non-ID trigger particle (5-10 GeV/c) ID associated π , K, p (1.5-4.5 GeV/c) p+<u>p</u>)/(π⁺+π⁻) Bulk Ratio (-0.52 < $\Delta \phi$ < 0.52, \pm 0.6 < $\Delta \eta$ < \pm 1.5) Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{TeV}$ - Peak Peak - Bulk Ratio (-0.52 < ∆0 < 0.52, -0.4 < ∆n < 0.4) 0-10% central - Bulk I .2 ALICE PRELIMINAR $2.0 < p_{\perp} < 2.5 \text{ GeV/c}, |\eta| < 0.8$ PERFORMANC Pythia (Peak - Bulk Ratio) May 21st, 2012 ···· Bulk II ຈັ 1.5 28000 $5.0 < p_{T,trig} < 10.0 \text{ GeV/c}$ 27000 0.8 26000 0.5 0.6 25000 0 24000 0.4 -0.5 23000 0.2 22000 -1 21000 -1.5 0 1.5 2.5 2 2 3 3.5 4.5 3 Ω 1 4 -1 $\Delta \phi$ (rad) $p_{_{T,assoc}}$ (GeV/c) ALI-PERF-15359 ALI-PREL-15474 Bulk region: **Near-side peak** (after bulk subtraction): p/π ratio strongly enhanced

 p/π ratio similar to pp (PYTHIA)

compatible with overall baryon enhancement

PID in jet structures

Pb-Pb

no medium-induced modification of jet particle ratios (jet chemistry)

baryon enhancement is from the bulk, not from jets

Anisotropic transverse flow

Anisotropic transverse flow

n=4

Elliptic flow

Triangular flow

n=3

azimuthal distribution of particles wrt. plane perpendicular to the beam

anisotropic momentum distributions

azimuthal dependence can be written in the form of a Fourier series

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n} \cos[n(\phi - \Psi_{R})]\right)$$

the magnitude of the anisotropic flow is characterized by the coefficients v_n of the Fourier expansion

n=10

Roberto Preghenella

n=2

n=15

Anisotropic transverse flow

Elliptic flow of identified particles

sensitive to the partonic degrees of freedom at early times in HI collisions

Direct photon production

 $p_{T} < 2 \text{ GeV/c}$ ~20% excess of direct photons $p_{T} > 4 \text{ GeV/c}$ agreement with N_{coll} scaled NLO

p-Pb collisions

first p-Pb collisions during LHC pilot run, 12 September 2012

Heavy flavour

Heavy flavour production

Heavy-flavour R_{AA}

Heavy-flavour R ΑΑ

CMS non-prompt J/ ψ (from B-meson decays) **R**_{AA} reflects b-quark energy loss in medium

Exclusive J/ ψ photoproduction

 \rightarrow high σ for γ -induced reactions

inclusive J/ψ central PbPb

exclusive J/ψ UPC

Exclusive J/ ψ photoproduction

Studied in ultra-peripheral (UPC) heavy-ion collisions impact parameter *b* larger than sum of the two radii 2R → hadronic interactions strongly suppressed

> high photon flux ~ Z^2 \rightarrow high σ for γ -induced reactions

Z Z

Successfully modeled in pQCD via two-gluon exchange → probes nuclear gluon distribution of the nucleus poorly known in the low-x region

Exclusive J/ ψ photoproduction

ALI-PREL-43382

arXiv:1209.3715 [nucl-ex]

Roberto Preghenella

Data is found in good agreement with pQCD models with $\sigma \sim [G(x,Q^2)]^2$ which include gluon shadowing

best agreement with EPS-09 parametrization both in central and forward region

...and much more

Summary and conclusions

ALICE is obtaining a wealth of physics results both from proton-proton collisions and from the first two LHC heavy-ion runs

Bulk and soft probes

Low-x with exclusive vector-meson production

High-p_T probes

Heavy-flavour physics

Now entering in the precision measurement era

p-Pb collisions clarify the role of the initial-state
 further Pb-Pb collisions before LHC LS2
 clear detector upgrade plan for hi-lumi LHC

The ALICE experiment at LHC

a dedicated heavy-ion experiment at the LHC

designed to cope with very high chargedparticle multiplicities $dN_{ch}/d\eta \le 8000$

3D tracking with TPC moderate B = 0.5 T thin materials for low- p_{τ} particles

uses all known PID techniques

> dE/dx

time-of-flight

transition radiation

Cherenkov radiation

> calorimetry

> muon filters

topological decay

Central-barrel particle identification

ALICE sub-detectors used for direct hadron identificationITStracking + vertexing + PID (dE/dx in silicon)TPCtracking + vertexing + PID (dE/dx in gas)TOF (+T0)PID (Time-Of-Flight)HMPIDPID (Ring Imaging Cherenkov)

Particle-identification: dE/dx technique

Particle-identification: Cherenkov

Roberto Preghenella

Particle-identification: relativistic rise

Particle ratios in pp

Identified-hadron *R*

 R_{AA} of $\pi/K/p$ are compatible at high p_{T} (> 7-8 GeV/c) This suggests that the medium does not affect the fragmentation Jet hadron-chemistry effects foreseen in some models are small, if present EPJC 55, 293 (2008)

Roberto Preghenella

45

dN_{ch}/dη in p-Pb collisions

dN_{ch}/dη in p-Pb collisions

arXiv:1210.3615 [nucl-ex]

p-Pb crucial to discriminate
between initial (cold nuclear
matter) and final state (QGP)
effects
p-Pb at LHC → probe nuclear
wave-function at small x

QCD at high gluon density: parton shadowing, gluon saturation?

gluon saturation models: steeper η_{lab} dependence than the data HIJING (parton shadowing) and DPMJET: describe the

rapidity shape rather well

Heavy-flavour R_{AA}

Average D-meson R_{AA} (|y| < 0.5) (D⁰, D⁺, D⁺⁺ are compatible within errors) large suppression in a wide p_{T} range factor 4-5 in 5 < p_{T} < 15 GeV/c

Heavy-flavour electrons R_{AA} (|y| < 0.6): strong suppression up to 18 GeV/c ongoing effort to separate beauty...

Heavy-flavour muons (2.5 < y < 4.0): suppression in the forward region similar to that of electrons

> JHEP 09, 112 (2012) arXiv:1210.7332 [hep-ex] arXiv:1205.6443 [hep-ex]

ALI-DER-36850

Heavy-flavour R_{AA}

Roberto Preghenella

49

D-meson elliptic flow

D-meson elliptic flow and models

the simultaneous description of v_2 and R_{AA} is challenging