

Stefano Perazzini LHCb Bologna

4 Luglio 2013

I quark charm (c) e beauty (b)

- I quark c e b, insieme al t (top) sono anche detti quark "pesanti"
 - le loro masse sono significaticamente più elevate rispetto a quelle degli altri tre quark più leggeri (u, d, s)
- Lo studio degli adroni contenenti i quark c e b permette di controllare con elevata precisione le previsioni del Modello Standard e di indagare l'eventuale esistenza di nuove particelle e nuove interazioni non ancora conosciute

Adroni: barioni e mesoni

- I quark non si osservano individualmente, ma soltanto in combinazione tra loro.
- Gli adroni sono particelle composite formate da quark. Si suddividono in:
 - Barioni, formati da 3 quark, e Mesoni, formati da una coppia quark-antiquark.

- I quark c e b sono i due quark più pesanti in grado di "adronizzare", cioè di legarsi con altri quark per formare adroni
 - $B^{\pm}(\overline{b}u)$, $B^{0}(\overline{b}d)$, $B_{s}(\overline{b}s)$, $\Lambda_{b}(bud)$, ...
 - $D^{0}(c\overline{u})$, $D^{\pm}(c\overline{d})$, $D_{s}^{\pm}(c\overline{s})$, $\Lambda_{c}(cud)$, ...

Le antiparticelle

- Per ogni particella costituente della materia esiste un'antiparticella costituente dell'antimateria.
- Le antiparticelle sono identiche alle corrispettive particelle in tutto eccetto che nella carica elettrica e nel momento magnetico, che sono opposti
 - ad esempio, la carica del protone è positiva e quella dell'antiprotone è negativa
- Particelle e antiparticelle hanno la stessa massa.

Perché i fisici si Interessano delle (a)simmetrie?

• Esiste un legame tra l'invarianza delle leggi fisicghe per trasformazioni di simmetria e principi di conservazione.

Trasformazione di simmetria	Grandezza conservata				
Traslazioni nello spazio	Quantità di moto				
Traslazioni nel tempo	Energia				
Rotazioni nello spazio	Momento angolare				
Inversione spaziale	Parità spaziale (P)				
Coniugazione di carica	Parità per coniugazione di carica (C)				
Inversione temporale	Parità per inversione temporale (T)				

Alcune di queste trasformazioni sono "continue" mentre altre sono "discrete"

Emmy Amalie Nöther, 1882-1935

Troppa simmetria è innaturale

volto naturale

volto "simmetrizzato"

Troppa simmetria è innaturale

volto naturale

volto "simmetrizzato"

Una certa asimmetria rende le figure più dinamiche...

Troppa simmetria è innaturale

volto naturale

volto "simmetrizzato"

Una certa asimmetria rende le figure più dinamiche...

...e anche più belle!

Simmetria P (Parità)

- Simmetria:
 - Il mondo visto allo specchio è uguale al mondo reale.
- Violazione della simmetria (asimmetria):
 - Il mondo visto allo specchio è diverso dal mondo

Violazione della simmetria P nel mondo macroscopico

Mondo allo specchio Mondo reale 10% 90% 10% 90% 99.999% 0.001% 99.999% 0.001% cuore a dx cuore a dx cuore a sx cuore a sx

Mondo reale ≠ mondo allo specchio (violazione della parità)

La Parità nella fisica microscopica

- Interazioni elettromagnetiche, e interazioni nucleari forti sono invarianti per inversione spaziale.
 - Diciamo che la parità P si conserva.
 - Le interazioni elettromagnetiche e le interazioni nucleari forti viste allo specchio sono assolutamente verosimili.
 - Non è possibile distinguere la destra dalla sinistra sulla base delle interazioni elettromagnetiche o delle interazioni nucleari forti.
- Le interazioni nucleari deboli invece non sono invarianti per inversione spaziale.
 - La parità P non si conserva.
 - Le interazioni nucleari deboli viste allo specchio possono essere inverosimili.
 - Si può distinguere la destra dalla sinistra sulla base delle interazioni nucleari deboli.

La simmetria CP

- In alcuni decadimenti di particelle mediati dalle interazioni nucleari deboli si osserva violazione di *P*.
- Tuttavia, se, <u>oltre</u> a guardare tali processi allo specchio, si scambiano anche le cariche positive con quelle negative (simmetria *C*, o coniugazione di carica), tali processi appaiono di nuovo verosimili. O per essere più precisi, quasi verosimili...

Una metafora

La stretta di mano a un extraterrestre

 Se non ci si vuole annichilare, prima di stringere la mano a un extraterrestre occorre accertarsi che esso sia composto di materia: come fare prima di toccarlo?

- Per fortuna materia e antimateria non sono esattamente l'una l'opposto dell'altra a causa della violazione di CP.
- Ad esempio alcune particelle, i kaoni neutri a vita lunga K_L, possono avere, tra gli altri, 2 decadimenti semileptonico, tra loro CP-coniugati, ma le probabilità che questi decadimenti si verifichino non sono esattamente le stesse.

$$\frac{\operatorname{rateo}(K_{L} \rightarrow e^{+} + \pi^{-} + v_{e})}{\operatorname{rateo}(K_{L} \rightarrow e^{-} + \pi^{+} + \overline{v}_{e})} = 1.00648 \pm 0.00035$$

Regola: mai stringere la mano a extraterrestri i cui nuclei atomici hanno carica elettrica dello stesso segno della carica degli elettroni emessi con maggiore frequenza nel decadimento semileptonico dei kaoni neutri a vita lunga.

Una lunga ricerca

- La violazione di CP impegna la fisica fondamentale da più di 40 anni.
 - La scoperta è stata precoce, favorita dalla piccola massa del kaone neutro K^0 (circa metà della massa di un protone).
 - Tuttavia la comprensione più profonda ha richiesto lo studio della violazione di CP nei decadimenti di altri mesoni neutri di massa più grande (D⁰, B⁰, B⁰_s)
- La produzione abbondante di queste particelle (il B⁰ ha massa pari a circa 5 volte la massa del protone) ha richiesto un notevole avanzamento tecnologico.
- Il meccanismo di violazione di CP oggi conosciuto, basato sul Modello Standard, prevede una violazione di entità troppo piccola per spiegare l'asimmetria cosmica.
 - La cosmologia suggerisce che, oltre al Modello Standard, esista un'altra sorgente ancora sconosciuta di violazione di CP.

L'antimateria in natura

- Non c'è evidenza di antimateria primaria nell'Universo.
 - La distanza minima dalla Terra di un eventuale dominio di antimateria è comparabile con la scala dell'orizzonte visibile ~1 Gpc (1 pc = 3.08x10¹⁶ m = 3.26 a.l.).
- Deve esistere un meccanismo asimmetrico che "preferisce" la materia all'antimateria.
- Quanto deve essere stata intensa inizialmente questa asimmetria? Quale eccesso di materia rispetto all'antimateria deve esserci stato inizialmente?
 - In realtà meno di quanto si possa pensare.
 - È sufficiente una parte per 10 miliardi.

Matrice CKM

- Tutta la violazione di CP prevista nel Modello Standard è spiegata dalla matrice CKM
- La matrice CKM descrive il miscelamento tra gli autostati di massa e gli autostati di sapore dei quark
- Nelle ampiezze dei processi d'interazione debole compaiono delle fasi complesse che cambiano segno per trasformazioni di CP

La presenza di una fase complessa nelle ampiezze dei processi è responsabile della violazione di CP

Come si manifesta la violazione di CP

- Per poter osservare violazione di CP è necessario che la stessa transizione avvenga tramite due processi distinti
 - Interferenza tra almeno due ampiezze con differenza di fase non nulla
- Violazione di CP "diretta"
 - − Si manifesta come una probabilità diversa per i due processi di decadimento $B \rightarrow f \in \overline{B} \rightarrow \overline{f}$
- Violazione di CP nel "miscelamento"
 - − Si manifesta come una diversa probabilità tra i due processi $B \rightarrow \overline{B} e$ $\overline{B} \rightarrow B$
- Interferenza tra **decadimento** e **miscelamento**
 - È dovuta all'interferenza tra i due processi di cui sopra, e può esistere anche in assenza dei due precedenti tipi di violazione di CP

Perché la violazione di CP è importante

Diagramma di miscelamento

Perché la violazione di CP è importante

- Le particelle che compaiono al'interno dei diagrammi sono particelle virtuali
- Particelle virtuali molto massive e non ancora osservate possono comparire all'interno dei diagrammi modificando i valori delle osservabili di violazione di CP

- Oscillazione dei kaoni neutri e meccanismo GIM → predizione del quark charm
- Oscillazione dei mesoni B neutri → stima della massa del quark top

La missione di LHCb

- Gli esperimenti LHC ambiscono alla scoperta di effetti di Nuova Fisica non previsti dal Modello Standard
- **Ricerche dirette** di nuove particelle prodotte dagli urti ultraenergetici di LHC sono realizzate dai cosiddetti *general purpose detectors*: **ATLAS e CMS**
- LHCb è specializzato per la ricerca indiretta di effetti di Nuova Fisica
 - Cercando discrepanze delle previsioni del Modello Standard causate dalla possibile presenza di nuove particelle pesanti che alterano il comportamento delle particelle note

 Effettuando misure di precisione di violazione di CP e ricerca di decadimenti rari di adroni pesanti, con quark beauty e charm)

Qualche volta le ricerche indirette pagano bene...

Una terza famiglia di quark è necessaria per spiegare la violazione di CP nelle interazioni deboli

M. Kobayashi and T. Maskawa CP Violation in the Renormalizable Theory of Weak Interaction Prog. Theor. Phys. **49** (1973) 652

CP violation nei decadimenti dei mesoni B a BaBar e Belle
 B. Aubert *et al.*, Phys. Rev. Lett. 87 (2001) 091801
 K. Abe *et al.*, Phys. Rev. Lett. 87 (2001) 091802

2008: Premio nobel in fisica

"per la scoperta dell'origine della rottura della simmetria che prevede l'esistenza di almeno tre famiglie di quark in natura"

...ma non dimentichiamo il Prof. Cabibbo

N. Cabibbo Unitary Symmetry and Leptonic Decays Phys. Rev. Lett. **10** (1963) 531

2010: Medaglia Dirac

per i suoi "fondamentali contributi alla comprensione delle interazioni deboli e di altri aspetti della fisica teorica"

Produzione di quark c e b a LHCb

- Nelle collisioni p-p a LHC vengono prodotti tantissimi adroni contenenti quark c e b:
 - Elevata sezione d'urto di produzione di coppie di quarks bb e cc:
 - $\sigma_{b\overline{b}}$ ~ 75 µb [Phys. Lett. **B694** (2010) 209]
 - Circa 10¹¹ adroni B prodotti dentro l'accettanza del rivelatore ogni anno
 - $\sigma_{c\overline{c}}$ è 20 volte più grande [Nucl. Phys. **B871** (2013) 1]
 - $-\sigma(pp \rightarrow c\overline{c}X) = ~1.4 \text{ mb}$

Direzione dei fasci

 I quark c e b sono prodotti in avanti con un piccolo angolo rispetto alla direzione dei fasci di p protoni $\theta_{2} [rad] \pi/2$ $\pi \pi 3\pi/4 \qquad \pi/2 \qquad \pi/4$ $\theta_{1} [rad]$

√s = 8 TeV

n

Il rivelatore LHCb

- Il rivelatore LHCb è uno spettrometro a braccio singolo in avanti
 - Al fine di coprire la zona in cui viene prodotta la maggior parte di quark c e b (~ 30%)

Pseudorapidità $2 < \eta < 5$

Il rivelatore LHCb

Il rivelatore LHCb

LHCb Event Display

- Eccellente capacità di distinguere K e π
- Identificazione del vertice di decadimento con una precisione di ~0.01 mm
 - Consente di rigettare le tracce inutili che vengono dall'interazione primaria p-p
 - Piccolo errore sulla determinazione del tempo di volo

Il trigger di LHCb

- Elevato numero di eventi "inutili"
 - σ_{visibile} ~ 60 mb at √s =7 TeV, 200 volte maggiore della sezione d'urto di produzione di beauty
 - Per ogni B prodotto, i decadimenti d'interesse hanno branching ratio (probabilità di verificarsi) da 10⁻⁴ a 10⁻⁹
- Elevata frequenza di collisioni p-p
 - 40 milioni al secondo
- Limiti di budget sulla quantità di dati immagazzinabili
 - ~2.5 PB di dati RAW raccolti nel 2011 e nel 2012

LHCb e la luminosità

- Durante il 2011 e 2012 LHCb ha lavorato con buona continuità ad una luminosità istantanea di 4 x 10³² cm⁻² s⁻¹
 - 2 volte la luminosità di progetto

Luminosità mantenuta costante durante il fill

Selezione di risultati di rilievo

- Violazione di CP
 - Prima osservazione di violazione di CP nei decadimenti del mesone B_s
 - Misura della fase di miscelamento del mesone B_s
 - Misure di violazione di CP nei decadimenti in due corpi carichi dei mesoni D⁰
- Oscillazione dei mesoni D⁰
- Decadimenti rari

 $-B_{(s)} \rightarrow \mu^+ \mu^-$

Violazione di CP nei decadimenti $B \rightarrow K\pi$

- Tipico esempio di violazione di CP diretta
- Risultati ottenuti utilizzando solamente i dati 2011 (1/fb)
- Necessario determinare le differenti efficienze di ricostruzione per i due stati finali coniugati di CP K⁺π⁻/K⁻π⁺
- Necessario stimare possibili differenze nei ratei di produzione dei mesoni B⁰ e B⁰

Misura più precisa mai eseguita di questa quantità (10.7σ)

Prima osservazione di violazione di CP nei decadimenti del B_s (6.5σ)

$$A_{CP} \left(B_s^0 \to K\pi \right) = 0.27 \pm 0.04 (\text{stat}) \pm 0.01 (\text{syst}).$$

Violazione di CP nei decadimenti $B^{\pm} \rightarrow D^{0}h^{\pm}$

- Altro esempio di violazione di CP diretta
- Sfrutta l'interferenza tra le ampiezze delle transizioni b→u e b→c
 - Estrazione dell'angolo γ del Triangolo Unitario
 - Le osservabili sensibili sono le asimmetrie dirette di CP e i rapporti tra i ratei di decadimento
- Possibilità di utilizzare diversi decadimenti dei mesoni D⁰
 - Metodo GLW: decadimenti dei mesoni D⁰ in autostati di CP (K⁺K⁻, π⁺π⁻,...)
 - Metodo ADS: decadimenti dei mesoni D⁰ negli stati finali K⁺π⁻ e K⁻π⁺
 - − Metodo GGSZ: analisi di Dalitz dei decadimenti D⁰→ $K_s \pi^+ \pi^-$ e D⁰→ $K_s K^+ K^-$

Metodo GLW

- GLW: Gronau-London-Wyler
 - Phys. Lett. **B253** (1991) 483
 - Phys. Lett. **B265** (1991) 172

Aspetti sperimentali

- Controllo delle efficienze di identificazione di K e π
- Controllo delle asimmetrie di rivelazione K⁺/K⁻ e π^+/π^-
- Controllo della possibile asimmetria di produzione B⁺/B⁻

Metodo ADS

Phys. Lett. B712 (2012) 203 $\int Ldt = 1 f b^{-1}$

- ADS: Atwood-Dunietz-Soni
 - Phys. Rev. Lett. 78 (1997)
- Aspetti sperimentali
 - Controllo delle efficienze di identificazione di K e π
 - Controllo delle asimmetrie di rivelazione K⁺/K⁻, π^+/π^- e K⁺ $\pi^-/K^-\pi^+$
 - Controllo della possibile asimmetria di produzione B⁺/B⁻

Metodo GGSZ

- GGSZ: Giri-Grossman-Soffer-Zupan
 - Phys. Rev. D68 (2003) 054018
- Per ogni bin nel piano di Dalitz vengono misurate le variabili sensibili a γ come nei metodi precedenti
- Ad ogni bin corrisponde una diversa sensibilità su γ
 - I risultati vengono mediati bin per bin in funzione della sensibilità

Combinazione

$$\gamma = (67 \pm 12)^{\circ} @ 68\%$$
 CL

- Metodi GLW e ADS con 1/fb (2011)
- Metodo GGSZ con 3/fb (2011+2012)
- Risultato migliore rispetto alle B-Factories

$$- \gamma_{BaBar} = (69 + 17)^{\circ}$$

$$-\gamma_{\text{Belle}} = (68^{+15})^{\circ}$$

In ottimo accordo con il Modello Standard

Misura della fase di mixing del mesone B_s

 Tipico caso di violazione di CP dovuta all'interferenza tra oscillazione e decadimento

- Assumendo la validità del modello standard:
 - Nelle transizioni b→ccs si ha che φ_D~0 → φ_s coincide con la fase di mixing φ_m
 - $-\phi_m = -0.036 \pm 0.002$ è predetto con un'ottima precisione

Una misura di ϕ_s diversa da 0 sarebbe un chiaro segnale di presenza di Nuova Fisica

Misura della fase di mixing del mesone B_s

• Misura effettuata utilizzando due decadimenti

 Lo stato finale J/ψφ è una miscela di autostati CP-pari e CP-dispari

 Lo stato finale J/ψf₀ è composto per più del 97.7 % dall'autostato CP-dispari

Decadimenti $B_s \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$

 K^+

- Lo studio delle distribuzioni negli angoli di elicità permette di separare i due autostati di CP
- Necessario determinare lo stato di sapore del mesone B_s al momento della produzione → Flavour tagging
 - Potere effettivo di tagging $\epsilon D^2 = (3.13 \pm 0.23) \%$
- Necessaria un'ottima risoluzione in tempo proprio di decadimento per seguire l'oscillazione veloce del mesone B_s → σ_t ~ 44 fs

Misura della frequenza di oscillazione del B_s con decadimenti $B_s \rightarrow D_s \pi$

Decadimenti $B_s \rightarrow J/\psi(\mu^+\mu^-) f_0(980)(\pi^+\pi^-)$

- Lo stato $J/\psi f_0(980)$ è quasi puramente CP dispari
 - Non è necessaria un'analisi angolare

Risultato ottenuto analizzando simultaneamente i due decadimenti $B_s \rightarrow J/\psi \varphi \in B_s \rightarrow J/\psi f_0$

ϕ_s	=	0.01	\pm	0.07	(stat)	\pm	0.01	(syst)	rad,
Γ_s	=	0.661	\pm	0.004	(stat)	\pm	0.006	(syst)	ps^{-1} ,
$\Delta\Gamma_s$	=	0.106	\pm	0.011	(stat)	\pm	0.007	(syst)	$\rm ps^{-1}.$

Nessuna evidenza di scostamento dal Modello Standard ma l'errore sperimentale è ancora grande comparato con le capacità predittive del Modello Standard

Violazione di CP nei decadimenti $D^0 \rightarrow h^+h^-$

- La violazione di CP è stata osservata nei decadimenti dei mesoni K, B[±], B⁰, B_s ma non ancora nel settore del quark charm
 - − Nel Modello Standard è attesa essere molto piccola \rightarrow O(10⁻⁴)
 - Un'osservazione di violazione di CP O(10⁻³) sarebbe un chiaro segnale di Nuova Fisica
- Ricerca della violazione di CP come asimmetria tra le ampiezze di decadimento

$$A_{CP}(f) = \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D}^0 \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D}^0 \to f)} \qquad f = K^+ K^-, \pi^+ \pi^-$$

• Necessario determinare lo stato di sapore iniziale del mesone D⁰

- Ad esempio utilizzando gli gnocchi decadimenti
$$D^* \rightarrow D^0(f)$$

$$A_{raw} \approx A_{CP} + A_D + A_P$$

$$A_{raw}(f) = \frac{N(D^{*+} \rightarrow D^0(f)\pi_s^+) - N(D^{*-} \rightarrow \overline{D}^0(\overline{f})\pi_s^-)}{N(D^{*+} \rightarrow D^0(f)\pi_s^+) + N(D^{*-} \rightarrow \overline{D}^0(\overline{f})\pi_s^-)}$$
Asimmetria di rivelazione Asimmetria di rivelazione Asimmetria di produzione

La differenza tra le asimmetrie è una quantità molto robusta da un punto di vista sperimentale in quanto asimmetrie strumentali si cancellano

$$\Delta A_{CP} \equiv A_{raw}(KK) - A_{raw}(\pi\pi) = A_{CP}(KK) - A_{CP}(\pi\pi)$$

Violazione di CP nei decadimenti D⁰→h⁺h⁻

• Due misure indipendenti di ΔA_{CP} :

- Sapore del D⁰ ottenuto dalla carica del μ da B
- B ricostruito parzialmente
- Asimmetria di produzione del B
- Asimmetria di rivelazione del μ

Violazione di CP nei decadimenti D⁰→h⁺h⁻

 $\Delta A_{CP} = (0.49 \pm 0.30 \,(\text{stat}) \pm 0.14 \,(\text{syst}))\%$

- Sistematico dominante 0.11%:
 - Fondo nel D⁰→ππ a brevi tempi
 di decadimento del D⁰

Violazione di CP nei decadimenti D⁰→h⁺h⁻

• $D^* \rightarrow D^0(f)\pi_s$ (LHCb-CONF-2013-003): - $\mathcal{L} = 1 \text{ fb}^{-1} @ \sqrt{s} = 7 \text{ TeV}$

 $\Delta A_{CP} = (-0.34 \pm 0.15 \,(\text{stat.}) \pm 0.10 \,(\text{syst.}))\%$

 $\Delta A_{CP} = (0.49 \pm 0.30 \,(\text{stat}) \pm 0.14 \,(\text{syst}))\%$

- Le due misure differiscono di 2.2σ :
 - I due campioni sono totalmente indipendenti

• Nuovo stato sperimentale: $\Delta A_{CP} = (-0.33 \pm 0.12)\%$

> È necessaria una maggiore statistica per poter trarre conclusioni definitive

Misura dell'oscillazione dei mesoni D⁰

• È possibile misurare l'oscillazione sfruttando l'interferenza tra l'oscillazione e il decadimento doppio Cabibbo soppresso:

Misura dell'oscillazione dei mesoni D⁰

Evidenza di osservazione del decadimento $B_s \rightarrow \mu^+ \mu^-$

- Uno dei canali più importanti in assoluto
- Decadimento molto raro nel Modello Standard
- Previsioni teoriche molto precise:
 - BR(B_s $\rightarrow \mu^+\mu^-$) = (3.5 ± 0.2) x 10⁻⁹
 - BR(B⁰ $\rightarrow \mu^{+}\mu^{-}$) = (1.1 ± 0.2) x 10⁻¹⁰
- I valori di questi branching ratio sono sensibili a diversi modelli di Nuova Fisica

• Utilizzando 2/3 della statistica totale a disposizione LHCb ha misurato:

• BR(B_s $\rightarrow \mu^+\mu^-$) = (3.5^{+1.5}_{-1.2}) x 10⁻⁹

3 eventi ogni miliardo di B_s prodotti

1 evento ogni 10 miliardi di B⁰ prodotti

- Compatibile con le previsioni del Modello Standard
- \bullet Prima evidenza del decadimento con una significanza di 3.5 σ
- BR($B^0 \rightarrow \mu^+ \mu^-$) < 9.4 x 10⁻¹⁰

Prospettive future e conclusioni

- Il Modello Standard è testardo come un mulo!!!
- Effetti macroscopici di nuova fisica nel flavour sono in larga parte esclusi
- Dove può emergere nuova fisica?
 - Necessario aumentare la statistica per migliorare la precisione di misura su alcuni canali chiave, cercando effetti più piccoli
 - Branching ratio $B_s \rightarrow \mu \mu$
 - Fase di mixing del mesone B_s
 - Misura di precisione dell'angolo $\boldsymbol{\gamma}$
 - CP violation nel charm
 - Ma nel settore del charm sono necessari anche passi in avanti della comprensione teorica
- Tante altre misure di rilievo, ma non è stato possibile discuterle oggi
- Il progetto di upgrade di LHCb sarà presto analizzato dal Comitato Tecnico Scientifico dell'INFN
- Ad maiora!

