Angular & Energy Distributions

Ch. Finck on behalf of D. Juliani

Vertex Cluster Size

Mass

Efficiencies

Angular Distribution

Energy Distribution

Distribution Z = 1

Conclusion

Vertex Cluster Size (i)

- Clusters size vs charge (ToF)
 - no cuts

Vertex Cluster Size (i)

- Clusters size vs charge (ToF)
 - no cuts

- with cut nTracks > 1

Vertex Cluster Size (ii)

Cluster size vs charge

Mass Distribution

- → Global reconstruction:
 - no cut

Mass Distribution

→ Global reconstruction:

- no cut

- nTracks > 1

Mass Distribution

→ Global reconstruction:

- no cut

- nTracks > 1

- Cut cluster

Efficiencies

versus angle Z = 1 -5

Angular Distribution (i)

 \Rightarrow Distribution for Z = 1-3 w/o and with cut (cluster size)

Angular Distribution (i)

 \div Distribution for Z = 1-3 w/o and with cut (cluster size)

Angular Distribution (i)

 \cdot Distribution for Z = 1-3 w/o and with cut (cluster size)

FIRST SW meeting, 26th June

Ch. Finck - IPHC

Angular Distribution (ii)

+Distribution for Z = 4, 5 w/o and with cut (nTracks)

Angular Distribution (ii)

+Distribution for Z = 4, 5 w/o and with cut (nTracks)

Energy Distribution

Distribution for all charges w/o and with cut (cluster size and nTracks)

Energy Distribution

Distribution for all charges w/o and with cut (cluster size and nTracks)

Energy Distribution

Distribution for all charges w/o and with cut (cluster size and nTracks)

Angular & Energy Distribution Z = 1

*Distribution for proton, deuterium & tritium

Angular & Energy Distribution Z = 1

*Distribution for proton, deuterium & tritium

Conclusions

- First (attempt) for angular & energy distributions (with cuts)
- * Evaluate correctly cuts on efficiency (response function and pileup)
- Get rid of charge pollution (especially carbon)!
- * Estimation of systematic errors (long term) including dead maps