
Simulation with Testbenches

MARIE CURIE IAPP: FAST TRACKER FOR HADRON COLLIDER EXPERIMENTS

1ST SUMMER SCHOOL: VHDL BOOTCAMP
PISA, JULY 2013

Calliope-Louisa Sotiropoulou
PhD Candidate/Researcher

Aristotle University of Thessaloniki

Simulation with Testbenches

 Testbenches

 Modeling Memory

2

Verification Flow Using Testbenches

 Instantiate the design under test (DUT)

 Stimulate the DUT by applying test vectors to the model

 Output results to a terminal or waveform window for visual

inspection

 Compare actual results to expected results

3

Verification Flow Using Testbenches

4

 Testbenches

 Testbenches can be written in VHDL or Verilog.

 Testbenches are used for simulation only, they are not

limited by semantic constraints that apply to RTL language

subsets used in synthesis.

 All behavioral constructs can be used.

 Testbenches can be written more generically, making them

easier to be reused.

5

Testbench Structure

VHDL

Entity and Architecture Declaration

Signal Declaration

Instantiation of Top-level Design

Provide Stimulus

6

Simulation Time

 There is one simulation time for the entire simulated system (one

master clock).

 Simulation is indexed by an integer Tc.

 Units are in seconds.

 A default resolution is specified when the simulator is invoked

 Simulation time begins at 0 s.

 Simulation time is advanced by the execution of the simulation

cycle to the time of the next queued event.

 A transaction can be scheduled “immediately” using delta time.

7

Simulation Terminology

 All signals have a current value associated with them at all

times during a simulation

 A transaction is an update of the current value of a signal

 During a simulation cycle in which a signal experiences a

transaction, the signal is said to be active

 An event is a transaction that results in a change of value

 Processes can schedule transactions to take place on their

output signals, both at future times or “immediately”.

8

Simulation Cycle

 The simulation cycle governs execution of the simulation.

 The simulation cycle is repeated until simulation terminates.

 Steps in the simulation cycle.

 The current time Tc is assigned the next schedule simulation time Tn.

 Each active signal is updated with its new value.

 Processes that are sensitive to signals that have just experienced events
are marked to resume during the current simulation cycle, as well as
processes scheduled to resume at the current time.

 Each process that is marked to resume is executed (in no defined order
of processes) until (if) it suspends.

 The next simulation time Tn is calculated according to the next time a
signal is schedule to become active or a process is scheduled to resume.

 If Tn=Tc then the next simulation cycle is called a delta cycle.

9

Simulation Cycle

10

Simulation Delta Time

 Infinitesimally small (δ) advance in time

 The current time Tc does not advance

 An infinite number of delta time steps can occur between

tags in the current time Tc

 “Which delta cycle” is not accessible in the language

 “do something immediately” means do it during the next

cycle, which will be a delta cycle

 Provides a means of ordering an event and the events that

result from it

11

Simulation Delta Time

12

Simulation Time – Clock Generation

13

-- Declare a clock period constant.

Constant ClockPeriod : TIME := 10 ns;

-- Clock Generation method 1:

Clock <= not Clock after ClockPeriod / 2;

-- Clock Generation method 2:

GENERATE_CLOCK: process

Begin

wait for (ClockPeriod / 2)

Clock <= ’1’;

wait for (ClockPeriod / 2)

Clock <= ’0’;

end process;

Simulation Time

 “after”:

Used in concurrent VHDL (signal assignment)

 “wait”:

Used in sequential VHDL

14

wait for 10 ns; -- timeout clause, specific time delay.

wait until clk='1'; -- condition clause, Boolean condition

wait until A>B and S1 or S2; -- condition clause, Boolean condition

wait on sig1, sig2; -- sensitivity clause, any event on any

 -- signal terminates wait

sig1 <= sig2 after 10 ns;

clk <= '1' , '0' after TimePeriod/2 ;

sig3 <= transport sig4 after 3 ns;

sig4 <= reject 2 ns sig5 after 3 ns; -- increasing time order

sig6 <= inertial '1' after 2 ns, '0' after 3 ns , '1' after 7 ns;

Providing Stimulus

15

MainStimulus: process begin

Reset <= '1';

Load <= '0';

Count_UpDn <= '0';

wait for 100 ns;

Reset <= '0';

wait for 20 ns;

Load <= '1';

wait for 20 ns;

Count_UpDn <= '1';

end process;

Providing Stimulus

16

Process (Clock)

Begin

If rising_edge(Clock) then

TB_Count <= TB_Count + 1;

end if;

end process;

SecondStimulus: process begin

if (TB_Count <= 5) then

Reset <= '1';

Load <= '0';

Count_UpDn <= '0';

Else

Reset <= '0';

Load <= ‘1’;

Count_UpDn <= ‘1’;

end process;

Verification Techniques

 Testbenches

 Modeling Memory

17

Modeling Memory

 When memory is part of a system, we’d like a way to get

some contents into our memory model in a fast easy way.

 The contents of memory are often created by some other

tool, and thus already exist in electronic form.

 FILE I/O

18

File I/O: Automated Testing

 Instead of creating a testbench which explicitly tries all

possible alternatives, a testbench can use FILE I/O to read a

“vector file” which contains a list of all the stimulus in tabular

form.

 The VHDL testbench can also contain statements that make

sure your design is working automatically, and thus doesn’t

count on you observing the output of the wave window for

verification.

19

File I/O: VHDL as Test Generator

 A VHDL model can export transitions that occur on all

signals to a file in any format for use by automated testing

equipment

 The system level model can also be used to create stimulus

and test assertions for another design tool altogether.

 Testbench can record informative messages as events

happen

20

File I/O: Package Declaration
Package std.TextIO:

 Built in File I/O facility of VHDL is VERY rudimentary,
essentially just enough to read or write a file

 Note: no explicit opening / closing of file, it is done
automatically

21

Package TextIO Commands

 procedure readline(f : in text; l : out line);
reads a line of text from the file and puts it in l.

 procedure read (l: inoutline;….);
used to get elements off of a line of text

 function endfile(f : in text) return boolean;
returns true if the end of the file was reached

 Basic flow:

 open a file (with the declaration)

 read a line of text

 use read, or its derivatives to extract vhdl elements until the end of
the file

22

Reading with TextIO
 read(l:inoutline; value: out bit; good : out bit)

 read(l:inoutline; value: out bit)

 Variants include this same pair for value types of:

 bit_vector

 boolean

 character

 integer

 real

 string

 time

 Note : no std_logic_vector type

23

Writing with TextIO
 procedure write (l : inoutline; value : in bit; justified: in side :=

right; field : in width := 0);

 Variants include this same pair for value types of:

 bit_vector

 boolean

 character

 integer

 real

 string

 Time

 All read and writes operate on a “line”, and readline and
writeline are used to read from and write that line to a file.

24

Package std_logic_textio

 Same with TextIO with the extension of types

 std_ulogic

 std_ulogic_vector

 std_logic_vector

 Adding the appropriate read and write functions

 Use of HEX numeral system

25

Octal and Hex commands
 procedure HREAD(L:inoutLINE; VALUE:out STD_ULOGIC_VECTOR);

 procedure HREAD(L:inoutLINE; VALUE:out STD_ULOGIC_VECTOR; GOOD: out
BOOLEAN);

 procedure HWRITE(L:inoutLINE; VALUE:in STD_ULOGIC_VECTOR; JUSTIFIED:in SIDE
:= RIGHT; FIELD:in WIDTH := 0);

 procedure OREAD(L:inoutLINE; VALUE:out STD_ULOGIC_VECTOR);

 procedure OREAD(L:inoutLINE; VALUE:out STD_ULOGIC_VECTOR; GOOD: out
BOOLEAN);

 procedure OWRITE(L:inoutLINE; VALUE:in STD_ULOGIC_VECTOR; JUSTIFIED:in SIDE
:= RIGHT; FIELD:in WIDTH := 0);

 This set exists for value type : std_ulogic_vector, std_logic_vector

26

Example Application: Programming a ROM

 Assume an adapted listing file romcontents.txt:

27

001

002

003

004

005

006

007

008

009

00a

00b

00c

00d

00e

00f

200

210

220

230

240

250

260

270

Program Memory

28

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use std.textio.all;

use ieee.std_logic_textio.all;

entity progrom is

Port (adr: in std_logic_vector(7 downto0);

data : out std_logic_vector(11 downto0);

clk: in std_logic);

end progrom;

architecture Behavioral of progromis

file datafile: text is "romcontents.txt";

type memorytypeis array(0 to 255) of std_logic_vector(11 downto 0);

signal rom: memorytype;

signal integer_address: integer range 0 to 255;

Program Memory

29

begin

 clkedge: process(clk)

 begin

 if rising_edge(clk) then

 integer_address <= to_integer(adr);

 endif;

 end process clkedge;

……

data <= rom(integer_address);

……

 Reading from memory as expected

Program Memory

30

fillrom: process

 variable line_in : line;

 variable ctr: integer;

 variable readfromfile: std_logic_vector(11 downto 0);

begin

 ctr:= 0;

 while not endfile(datafile) loop

 readline(datafile,line_in);

 hread(line_in,readfromfile);

 rom(ctr) <= readfromfile;

 ctr:= ctr+ 1;

 end loop;

 wait;

end process fillrom;

end Behavioral;

Generating Output Files

 Output files can be generated to be used in other

applications:

 They can contain the results in order to be compared with expected

results produced by another algorithmic toolchain

 They can contain control signals in order to check if the behavior of

the design was as expected

31

Generating Output Files

32

process(Data,Adr,Fast_Clock,rd,wr,cs,reset)

 File outfile: TEXT is out "setramfile.txt";

 Variable L : LINE;

 Variable databitvector: Bit_Vector(0 to 15);

Begin

 If (Reset'Event) then

 if(Reset = '1') then

 WRITE(L, string'("h reset"));

 Else

 WRITE(L, string'("l reset"));

 endif;

 WRITELINE(outfile,L);

 endif;

 if(Adr'Event) then

 WRITE(L,string'("set address "));

 WRITE(L,adr);

 WRITELINE(outfile,L);

 if(cs'Event) and (cs= '1') then

 WRITE(L,string'("h chip_Select"));

References

 “Writing Testbenches: Functional verification of HDL

models”, Janick Bergeron, Kluwer Academic Publishers

 “Writing Efficient Testbenches”, Mujtaba Hamid, Xilinx

Application Note

 “Xilinx VHDL Test Bench Tutorial”, Billy Hnath, Department

of Electrical and Computer Engineering , Worcester

Polytechnic Institute, eBook

 “Xilinx ISE Simulator (ISIM) VHDL Test Bench Tutorial”, online

tutorial, Digilent Corp.

33

