
Finite State Machines (FSMs)

MARIE CURIE IAPP: FAST TRACKER FOR HADRON COLLIDER EXPERIMENTS

1ST SUMMER SCHOOL: VHDL BOOTCAMP
PISA, JULY 2013

Calliope-Louisa Sotiropoulou
PhD Candidate/Researcher

Aristotle University of Thessaloniki

Finite State Machines

2

Finite State Machines

 A finite state machine (FSM) is a sequential logic circuit

which moves between a finite set of states, dependent upon

the values of the inputs and the previous state. The state

transitions are synchronized on a clock.

 FSMs are used for designs who require a defined sequence

of events (e.g. control modules)

 They consist of two parts:

 Combinational Logic

 Memory elements

3

Finite State Machines

4

Combinational

Logic

Sequential

Logic

input output

nx_state
pr_state

clock
reset

Finite State Machines

 There are two different types of FSMs Mealy vs Moore

 Moore Machines:

Outputs are a function of current state

Outputs change synchronously with state changes

 Mealy machine:

Outputs depend on state and on inputs

Input changes can cause immediate output changes

(asynchronous)

5

Moore vs Mealy Machines

6

Mealy Machine

Moore Machine

How to write an FSM – Style 1
• Using two processes: One for the combinational part

and one for the FSM state

• For the different states a new enumerated type of
signal is usually defined

Process (reset, clock)

Begin

 if (reset=‘1’) then

 pr_state <= state0;

 elsif (clock’event and clock=‘1’) then

 pr_state <= nx_state;

 end if;

End process;

7

How to write an FSM – Style 1
Process (input, pr_state)

Begin

 case pr_state is

 when state0 =>

 if (input = …) then

 output <= <value>;

 nx_state <= state1;

 else …

 end if;

 when state1 =>

 if (input = …) then

 output <= <value>;

 nx_state <= state2;

 else …

 end if;

 when state2 =>

 if (input = …) then

 output <= <value>;

 nx_state <= state1;

 else …

 end if;

…

 end case;

End process;

8

The use of CASE is very common

All the input signals must be in the

sensitivity list

All the possible outputs must be

defined

How to write an FSM – Style 1

9

FSM
a
b

x
d

clk rst

StateA

(x=a

)

StateB

(x=b

)

d=1

d=1

d=0 d=0

rst

Entity simple_fsm is

 port (a, b, d, clk, rst: in bit;

 x: out bit);

End simple_fsm;

Architecture simple_fsm of simple_fsm is

 type state is (stateA, stateB);

 signal pr_state, nx_state: state;

Begin

How to write an FSM – Style 1

10

------------- sequential part ---------------------

Process (rst, clk)

Begin

 if (rst=‘1’) then

 pr_state <= stateA;

 elsif (clock’event and clk=‘1’) then

 pr_state <= nx_state;

 end if;

End process;

-------------- combinational part----------------------

Process (a, b, d, pr_state)

Begin

 case pr_state is

 when stateA =>

 x <= a;

 if (d=‘1’) then nx_state <= stateB;

 else nx_state <= stateA;

 end if;

 when stateB =>

 x <= b;

 if (d=‘1’) then nx_state <= stateA;

 else nx_state <= stateB;

 end if;

 end case;

End process;

End simple_fsm;

How to write an FSM – Style 2

• The output is assigned on clock change

• Only one process is used
Architecture <arch_name> of <ent_name>

 type states is (state0, state1, state2, state3, …);

 signal pr_state: states;

 signal temp: <data_type>

Begin

 Process (reset, clock, pr_state)

 Begin

 if (reset=‘1’) then

 pr_state <= state0;

 elsif (clock’event and clock=‘1’) then

11

 case pr_state is

 when state0 =>

 output<= <value>;

 if (condition) then pr_state <= state1;

 …

 end if;

 when state1 =>

 output<= <value>;

 if (condition) then pr_state <= state2;

 …

 end if;

 ……

 end case;

 end if;

 end process;

End <arch_name>;

Example – BCD counter
library ieee;

 use ieee.std_logic_1164.all;

 entity counter is

 port (clk, rst: in std_logic;

 count: out std_logic_vector (3 downto 0));

 end counter;

 architecture state_machine of counter is

 type state is (zero, one, two, three, four,

 five, six, seven, eight, nine);

 signal pr_state, nx_state: state;

begin

 process (rst, clk)

 begin

 if (rst='1') then

 pr_state <= zero;

 elsif (clk'event and clk='1') then

 pr_state <= nx_state;

 end if;

 end process;

12

Example – BCD counter
------------- ---------------------
process (pr_state)

 begin

 case pr_state is

 when zero =>

 count <= "0000";

 nx_state <= one;

 when one =>

 count <= "0001";

 nx_state <= two;

 when two =>

 count <= "0010";

 nx_state <= three;

 when eight =>

 count <= "1000";

 nx_state <= nine;

 when nine =>

 count <= "1001";

 nx_state <= zero;

 end case;

 end process;

end state_machine;

13

FSM

 So…

 What does our FSM do?

14

