MARIE CURIE IAPP: FAST TRACKER FOR HADRON COLLIDER EXPERIMENTS

15T SUMMER ScHooOL: VHDL BOOTCAMP
PisA, JuLy 2013

Finite State Machines (FSMs)

Calliope-Louisa Sotiropoulou

PhD Candidate /Researcher
Aristotle University of Thessaloniki

AUTH e-LA

llllllllll 'niversity of Thessaloniki-Electronics Laboratory

U

Finite State Machines

Finite State Machines

e A finite state machine (FSM) is a sequential logic circuit
which moves between a finite set of states, dependent upon
the values of the inputs and the previous state. The state
transitions are synchronized on a clock.

e FSMs are used for designs who require a defined sequence
of events (e.g. control modules)

e They consist of two parts:
e Combinational Logic

* Memory elements

Finite State Machines

input output
or_state nx_state
clock

reset

Finite State Machines

® There are two different types of FSMs Mealy vs Moore

e Moore Machines:
Outputs are a function of current state
Outputs change synchronously with state changes

* Mealy machine:
Outputs depend on state and on inputs
Input changes can cause immediate output changes
(asynchronous)

Moore vs Mealy Machines

—
INpts D:?I'E';n:f}l:ﬂh'
I r
*| mext stabe - *|logic fm-:wtpub M Machi
il i - ul=
ol . - outp | . oore acnine
1
state feedback
npute—{ | logic for v cutputs
. outpuis .
—* combinational
logic for H
g Mealy Machine

T ¥v¥wrY
S IE
L] |

state feadback

How to write an FSM — Style 1

« Using two processes: One for the combinational part
and one for the FSM state

* For the different states a new enumerated type of
signal is usually defined

Process (reset, clock)
Begin
if (reset="'1’) then
pr_state <= state0;
elsif (clock’event and clock="1’) then
pr_state <= nx_state;
end if;

End process;

How to write an FSM — Style 1

Process (input, pr_state)
Begin
case pr_state is
when stateQ =>

if (input = ...

else ...
end if;
when state1 =>

if (input = ...

else ...
end if;
when state2 =>

if (input = ...

else ...

end if;

end case;

End process;

) then
output <= <value>;

nx_state <= statel;

) then
output <= <value>;

nx_state <= state2;

) then
output <= <value>;

nx_state <= statel;

The use of CASE is very common

All the input signals must be in the
sensitivity list

All the possible outputs must be
defined

How to write an FSM — Style 1

clk rst
Entity simple_fsm is
port (a, b, d, clk, rst: in bit;
x: out bit);

End simple_fsm;

Architecture simple_fsm of simple_fsm is
type state is (stateA, stateB);
signal pr_state, nx_state: state;

Begin

rst

d=

Q.
|

1

1

How to write an FSM — Style 1

------------- sequential part -==mmmaaaaam-- combinational part
Process (rst, clk) Process (a, b, d, pr_state)
Begin Begin
if (rst="1’) then case pr_state is
pr_state <= stateA; when stateA =>
elsif (clock’event and clk=‘1’) then x <= q;
pr_state <= nx_state; if (d='1’) then nx_state <= stateB;
end if; else nx_state <= stateA;
End process; end if;

when stateB =>
x <= b;
if (d="1") then nx_state <= stateA;
else nx_state <= stateB;
end if;
end case;
End process;

End simple_fsm;

How to write an FSM — Style 2

« The output is assigned on clock change

* Only one process is used

case pr_state is
when stateQ =>

. output<= <value>;
type states is (stateQ, state1, state2, state3, ...); if (condifion) then pr_state <= state];

Architecture <arch_name> of <ent_name>

signal pr_state: states;
end if;

when statel =>

signal temp: <data_type>

Begin
output<= <value>;

Process (reset, clock, pr_state)
if (condition) then pr_state <= state?2;
Begin
if (reset="1’) then end if;
pr_state <= stateOQ; ...
end case;
end if;

end process;

elsif (clock’event and clock=*1") then

End <arch_name>;

11

Example — BCD counter

library ieee;
use ieee.std_logic_1164.all;
entity counter is
port (clk, rst: in std_logic;
count: out std_logic_vector (3 downto 0));
end counter;
architecture state_machine of counter is
type state is (zero, one, two, three, four,
five, six, seven, eight, nine);
signal pr_state, nx_state: state;
begin
process (rst, clk)
begin
if (rst="1") then
pr_state <= zero;
elsif (clk'event and clk="1") then
pr_state <= nx_state;
end if;

end process;

Example — BCD counter

process (pr_state)
begin
case pr_state is

when zero =>
count <= "0000";
nx_state <= one;

when one =>
count <="0001";
nx_state <= two;

when two =>
count <="0010";
nx_state <= three;

when eight =>
count <= "1000";
nx_state <= nine;

when nine =>
count <="1001";
nx_state <= zero;

end case;
end process;
end state_machine;

FSM

e So...

What does our FSM do?

14

