
IAPP SCHOOL - VHDL DESIGN: 
CHIPSCOPE AND DEBUGGING

DANIEL MAGALOTTI



Introduction of debugging problem

• Testing and debugging

• Why debugging is important?

Description of ChipScope™ Pro software 

• Minimal impact to FPGA design

• Optimized cores consume minimal FPGA resources 

How to add ChipScope Pro software into design

Describe the ChipScope Pro cores and how to allow you to 

focus on solving problems

• Integrated Logic Analyzer (ILA) for viewing results

• IBERT for high speed serial link

SUMMARY

Page 2



Do you know the difference between testing and debugging

problems?

Page 3

TEST & DEBUG



Do you know the difference between testing and debugging

problems?

In testing, the goal is to determine as quickly as possible whether the 

chip is working correctly, with high, but not absolute, certainty. 

Page 4

TEST & DEBUG



Do you know the difference between testing and debugging

problems?

In testing, the goal is to determine as quickly as possible whether the 

chip is working correctly, with high, but not absolute, certainty. 

In debugging, the goal is not simply to determine that the chip is not 

working, but to find out why it is not working. It is not automatic, but 

requires the participation of the chip-design team. And it occurs at 

discrete points in the design cycle.

Page 5

TEST & DEBUG



FPGA designs are becoming more complex

• Designs are becoming faster

• Design times are becoming shorter

Debugging and verification are more challenging

• Debugging and verification consume a significant portion of 

FPGA design time

• An FPGA design survey conducted by Xilinx indicates that FPGA 

debugging and verification accounts for nearly 40% of the FPGA 

design time

• Debugging and verification need to be easier and integrated into 

the FPGA design flow

WHY DEBUGGING IS IMPORTANT?

Page 6



Debug and verification can account for over 

40% of an FPGA design time

Serial nature of debug and verification 

can make it difficult to optimize

Inefficient strategy may result in product 

launch delay 

• Loss in market share

• Loss of first-to-market advantages

Page 7

DEBUG AND VERIFICATION IS CRITICAL



Debugging is problem solving

• Break a problem into basic parts 

• Remove or reduce variables 

and variation

• Predict and verify

Debugging is an iterative process

Verification is a component 

of debugging

• Confirming no problems remain

LOGIC OF DEBUGGING

Modify design

Probe 

design

Analyze 

debugging data

Identify fix

Verify design

Create design

Page 8 



Page 9

TRADITIONAL DEBUG CHALLENGES

In order to understand typical debugging problem I show 

you a “RANDOM” board

Who guess? I give you three options

LAMB

AMB

AM



Page 10

TRADITIONAL DEBUG CHALLENGES

In order to understand typical debugging problem I show 

you a “RANDOM” board

Who guess? I give you three options

LAMB

AMB

AM



Page 11

TRADITIONAL DEBUG CHALLENGES



Page 12

TRADITIONAL DEBUG CHALLENGES

FPGA

FPGA

SERIAL/PARALLEL 

DATA

DISTRIBUTION

Which kind of tool do you want 

to use for debugging the board?



Page 13

TRADITIONAL DEBUG CHALLENGES

FPGA

FPGA

DIGITAL OSCILLOSCOPE

LOGIC ANALYZER



We focalize to debug a single FPGA 

Page 14

TRADITIONAL DEBUG CHALLENGES

Internal Block of FPGA

FIFO

COUNTER or 

MULTIPLEXER or 

FLIP FLOP D

RAM



We focalize to debug a single FPGA

Page 15

TRADITIONAL DEBUG CHALLENGES

Internal Block of FPGA The point that you can use to  

access to you FPGA is the IO 

pin  



We focalize to debug a single FPGA

Page 16

TRADITIONAL DEBUG CHALLENGES

Internal Block of FPGA The point that you can use to  

access to you FPGA is the IO 

pin 

A typical package for the 

FPGA is a BGA 



Which the step in which we can divide the design of the 

FPGA

1° STEP: definition of the specification and 

architecture design by VHDL code

Page 17

STEP OF DEBUGGING



Which the step in which we can divide the design of the 

FPGA

2° STEP: synthetize the code and perform a 

behavioral simulation of your code

Page 18

STEP OF DEBUGGING



Which the step in which we can divide the design of the 

FPGA

3° STEP: implementation of your code and timing 

simulation of your code

Page 19

STEP OF DEBUGGING



Which the step in which we can divide the design of the 

FPGA

4° STEP: modify you testbench file in order to 

consider all the possible input stimulus to your design

Page 20

STEP OF DEBUGGING

TESTBENCH Module

UUT1
File 1,2,3…



Which the step in which we can divide the design of the 

FPGA

5° STEP: insert more than a FPGA into testbench to 

simulate the protocol between them 

Page 21

TRADITIONAL DEBUG CHALLENGES

TESTBENCH Module

UUT1

UUT2

File 1,2,3…



Which the step in which we can divide the design of the 

FPGA

1° STEP: definition of the specification and 

architecture design by VHDL code

2° STEP: synthetize the code and perform a 

behavioral simulation of your code

3° STEP: implementation of your code and timing 

simulation of your code

4° STEP: modify you testbench file in order to 

consider all the possible input stimulus to your design

5° STEP: insert more than a FPGA into testbench to 

simulate the protocol between them 

Page 22

STEP OF DEBUGGING



Which the step in which we can divide the design of the 

FPGA

6° STEP: Programming the FPGA

Page 23

STEP OF DEBUGGING

.bit file



Which the step in which we can divide the design of the 

FPGA

6° STEP: Programming the FPGA

Page 24

STEP OF DEBUGGING

.bit file

New parameter into the real design that 

you cannot considering into simulation

• Error in the board design

• Temperature variation

• …



Requires Extensive Dedicated I/O for Debug

• Driving signals to external I/O introduces additional problems

Inflexible solution

• Difficult or impossible to add additional debug pins if needed 

Limited visibility to on-chip activity

Page 25

TRADITIONAL LOGIC ANALYSIS METHOD

Dedicated pins connected to logic analyzer



FPGA Enables Full Internal Visibility

• Complete on-chip access

Access Processor System Busses

• Integrated Bus  Analyzer

Flexible On-Chip Debug

• Small, efficient cores access any 

node or signal and can be removed

at any time

Enable Complete System Verification

• Debug systems in real-time

Page 26

WHAT DO WE WANT

Internal Block of FPGA



Page 27

CHIPSCOPE PRO ON-CHIP DEBUG 

No I/O pins required for debug

• Access via the JTAG Port 

On-Chip access to every signal and node in the FPGA design

Add and remove cores at any time in the design process



Use the ChipScope Pro software for

• Verification and debug

• Injecting short signal sequences

• Capturing data for post-bench 

analysis

Do not use the ChipScope Pro software 

for

• A replacement for a simulation tool

• Accessing the System Monitor

• Testing high-speed I/O

• Remote diagnostics/monitoring

CHIPSCOPE PRO ON-CHIP DEBUG 

Page 28



OPTIMIZED DEBUGGING CORES

There are 5 CORE integrated into ChipScope  

Integrated Bit Error Ratio 

(IBERT)

•monitor the functionality of 

transceivers (GTP, GTH, GTX)

Page 29



ChipScope™ Pro software cores utilize FPGA resources

• For what?

• Block RAM: trigger and data storage

• Slice logic: trigger comparisons

You must leave room for the ChipScope Pro software cores in the FPGA

• This may require using a larger part in the same package as you will 

use in production

• The CORE Generator and Core Inserter tools can estimate block RAM 

usage, but the design may still end up with too many block RAMs

• If MAP issues an error, reduce the number of observed signals or the 

sample data depth to reduce block RAM usage

CORE RESOURCES

Page 30



ADD CHIPSCOPE 
IN THE DESIGN

Page 31



Two way to insert the ChipScope: into HDL source or with Core Insert

USING CHIPSCOPE PRO SOFTWARE

ChipScope Pro 

Core Generator

Instantiate Cores into 

Source HDL

Connect Internal Signals

to Core (in Source HDL)

Synthesize

Implement

Synthesize

ChipScope Pro Core

Inserter (into netlist)

Download and debugging

Using ChipScope Pro software

Page 32



Two way to insert the ChipScope: into HDL source or with Core Insert

Core Insert

• Click  Project -> New Source

• Select ChipScope Definition 

and Connection File (CDC)

• Specify a name for the core

USING CHIPSCOPE PRO SOFTWARE

ChipScope Pro 

Core Generator

Instantiate Cores into 

Source HDL

Connect Internal Signals

to Core (in Source HDL)

Synthesize

Implement

Synthesize

ChipScope Pro Core

Inserter (into netlist)

Download and debugging

Using ChipScope Pro software

Page 33



Two way to insert the ChipScope: into HDL source or with Core Insert

Core Insert

• Click  Project -> New Source

• Select ChipScope Definition 

and Connection File (CDC)

• Specify a name for the core

USING CHIPSCOPE PRO SOFTWARE

ChipScope Pro 

Core Generator

Instantiate Cores into 

Source HDL

Connect Internal Signals

to Core (in Source HDL)

Synthesize

Implement

Synthesize

ChipScope Pro Core

Inserter (into netlist)

Download and debugging

Using ChipScope Pro software

Page 34



Two way to insert the ChipScope: into HDL source or with Core Insert

USING CHIPSCOPE PRO SOFTWARE

ChipScope Pro 

Core Generator

Instantiate Cores into 

Source HDL

Connect Internal Signals

to Core (in Source HDL)

Synthesize

Implement

Synthesize

ChipScope Pro Core

Inserter (into netlist)

Download and debugging

Using ChipScope Pro software

A source VHDL for the design

A different source for the 

ChipScope

Logic dedicate 

to ChipScope

Logic dedicate to design

Page 35



THE ICON CORE

Page 36



ILA CORE

Page 37



Integrated Logic Analyzer (ILA) cores can be added with either the 

CORE Generator or Core Inserter tools or PlanAhead tool

A design can contain up to 15 ILA cores

Maximum speed of the ILA core varies according to device family and 

selected features

• Turning on more “features” generally slows down the 

performance of the core and causes it to consume additional 

fabric resources

THE ILA CORE

Page 38



Considering the baby FTK project we select the point that 

we want to monitor the data

THE BABY FTK PROJECT

Page 38

Signal that we     

want to monitor

DATA_TO_LAMB0

HIT_A_IN

HIT_B_IN

STATE_OF_FSM



The wizard after the inserting chipscope core

Page 39

ILA CORE



The wizard to define the option of the ILA core

Page 41

ILA CORE: WIZARD



The trigger parameters and capture parameters

Page 42

ILA CORE: WIZARD

Different signal 

selection for the 

trigger

Width of the 

trigger

Matching option 

for the trigger



The net selection wizard: the clock selection to sample the data

Page 43

ILA CORE: WIZARD



The net selection wizard: the data signals selection 

Page 44

ILA CORE: WIZARD



Page 45

CHIPSCOPE: ANALYZER



Page 46

CHIPSCOPE: ANALYZER

The Chipscope software: selection of the ILA unit: trigger 

and waveform



Page 47

CHIPSCOPE: ANALYZER

The Chipscope software: selection of the trigger 

sequence and monitor of the data selected 



Page 48

CHIPSCOPE: ANALYZER

The Chipscope software: selection of the trigger 

sequence and monitor of the data selected 



IBERT CORE

Page 49



The IBERT core is used to evaluate and monitor the functionality of 

transceivers for a variety of Xilinx devices, (for example the 

Spartan®-6 GTP transceiver, Virtex®-6 GTX transceivers) . 

The design includes pattern generators and checkers implemented in 

FPGA logic, as well as access to the ports and dynamic 

reconfiguration port (DRP) attributes of the GTX transceivers.

The IBERT core is a self-contained design. When generated, it runs 

through the entire implementation flow, including bitstream 

generation.

Page 50

THE IBERT CORE



Description of interface between the IBERT core and the transceiver

Page 51

IBERT DESIGN FLOW (2/1)

IBERT CORE
Need to create a direct link 

between the TX/RX of the same 

FPGA



DRP Interface and GTX Port Registers: IBERT provides you with 

the flexibility to change GTX transceiver ports and attributes. 

Dynamic reconfiguration port (DRP) logic is included, which allows 

the runtime software to monitor and change any attribute in any of the 

GTX transceivers included in the IBERT core. 

Pattern Generator: Each GTX transceiver enabled in the IBERT 

design has both a pattern generator and a pattern checker. The 

pattern generator sends data out through the transmitter.

Error Detector: Each GTX transceiver enabled in the IBERT design 

has both a pattern generator and a pattern checker. The pattern 

checker takes the data coming in through the receiver and checks it 

against an internally generated pattern.

Page 52

IBERT DESIGN FLOW (2/2)



Create a new project with only the IBERT core 

instantiation  

Page 53

GENERATING AN IBERT DESIGN

The core create a

standalone project.

A bit programming file

is generated with the

purpose to test only the

quality of link



Define the parameter of the IBERT core 

Page 54

GENERATING AN IBERT DESIGN

• With the core generator 

interface we can select 

a series of parameter of 

the link, for example the 

speed of the link and 

the clock reference.  



The graphic interface of the IBERT 

Page 55

GENERATING AN IBERT DESIGN



In order to characterize the link the Bit Error Rate (BER) is plotted 

(called “bath” curve)

Page 56

GENERATING AN IBERT DESIGN

BATHCURVE



In order to characterize the link the Bit Error Rate (BER) is plotted 

(called “bath” curve)

Page 57

GENERATING AN IBERT DESIGN

EYE DIAGRAM

BATHCURVE



EXERCISE IN THE 
LABORATORY

Page 58



Page 59

EXERCIZE IN THE LABORATORY

The FTK system is composed of 2 different boards + 1 chip

VME CRATE
AMBFTK

LAMBFTK

AMCHIP



Page 60

EXERCIZE IN THE LABORATORY

Do you remember the 6° STEP?

The Impact software help us to load the program bit file 

into your FPGA



Page 61

EXERCIZE IN THE LABORATORY

Do you remember the 6° STEP?

The Impact software help us to load the program bit file 

into your FPGA



Page 62

EXERCIZE IN THE LABORATORY

We test whit ChipScope the data chain of the output of the 

Amchip to LAMB and to AMB 

Input Stimulus

Output  

parallel data

GLUE 

CHIP



Page 63

EXERCIZE IN THE LABORATORY

We test whit ChipScope the data chain of the output of the 

Amchip to LAMB and to AMB

GLUE 

CHIP

ROAD 

CHIP

Output  

parallel data


