
RAMs – FIFOs - Coregen

MARIE CURIE IAPP: FAST TRACKER FOR HADRON COLLIDER EXPERIMENTS

1ST SUMMER SCHOOL: VHDL BOOTCAMP
PISA, JULY 2013

Calliope-Louisa Sotiropoulou
PhD Candidate/Researcher

Aristotle University of Thessaloniki

RAMs – FIFOs - Coregen

2

RAM

 Random-access memory (RAM) is a form of digital data

storage. A random-access control circuit allows stored data

to be accessed directly in any random order.

 There are two kinds of possible RAM implementations on a

Xilinx FPGA:

 The Distributed RAM

 The BRAM

3

https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Data

RAM

 Distributed RAM's:

The configuration logic blocks(CLB) in most of the Xilinx

FPGA's contain small single port or double port RAM. This

RAM is normally distributed throughout the FPGA than as a

single block (it is spread out over many LUT's) and so it is

called "distributed RAM".

 A look up table on a Xilinx FPGA can be configured as a

16*1bit RAM , ROM, LUT or 16bit shift register.

4

RAM

 Block RAM's:

 A block RAM is a dedicated (cannot be used to implement

other functions like digital logic) two port memory

containing several kilobits of RAM. Depending on how

advanced your FPGA is there may be several of them. For

example Spartan 3 has total RAM, ranging from 72 kbits to

1872 kbits in size. While Spartan 6 devices have block

RAMs of up to 4824 Kbits in size.

5

RAM
 Differences between Distributed and Block RAM's:

 Distributed RAM is ideal for small sized memories. But when
comes to large memories, this may cause a extra wiring delays.
But Block RAM's are fixed RAM modules which come in 9 kbits or
18 kbits in size. If you implement a small RAM with a block RAM
then its wastage of the rest of the space in RAM.
So use block RAM for large sized memories and distributed
RAM for small sized memories or FIFO's.

 In both, the WRITE operation is synchronous (data is written to
ram only happens at rising edge of clock). But for the READ
operation, distributed RAM is asynchronous (data is read from
memory as soon as the address is given, doesn't wait for the clock
edge) and block RAM is synchronous.

6

RAM / ROM
 The type of Inferred RAM depends on its description

 RAM descriptions with an asynchronous read generate a distributed
RAM

 RAM descriptions with a synchronous read generate a block RAM or
distributed RAM based on:

 Tool decision

 User specified constraint

 ROMs are read-only versions of RAM

 Not every RAM feature is supported by every Xilinx device

 Older devices have limited support

 Always read the specific device’s documentation !

RAM features
 There is a multitude of RAM features supported by modern FPGA

devices

 Single-port, simple-dual port, true dual port

 Up to two write ports

 Multiple read ports (depending on write ports and write address)

 Asymmetric ports (block RAM)

 Write enable

 RAM enable (block RAM)

 Data output reset (block RAM)

 Optional output register (block RAM)

 Byte-Wide Write Enable (block RAM)

 Different port clocks

 Initial contents specification

 Parity bits (block RAM – instantiation only)

RAM types
 Single port RAM

 Single data port, one address port used both for read / write

 Single clock

 Simple dual port (SDP) RAM

 Two data ports, two address ports

 One port is strictly a read port, the other is strictly a write port

 Two different clocks

 True dual port (TDP) RAM

 Two data ports, two address ports

 Each port can be used for reading or writing independent of the other
port

 Two different clocks

 Half the data width of the SDP configuration

RAM modeling

 Modeling a RAM in VHDL

 Reading and writing RAM contents

 IEEE.STD_LOGIC_UNSIGNED.ALL for conv_integer function

type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);

signal RAM: ram_type;

Single port 64x16 RAM (64 words of 16 bit)

type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);

shared variable RAM: ram_type;

Dual port 64x16 RAM (64 words of 16 bit) with two write ports

do <= RAM(conv_integer(addr));

Read / write access

RAM(conv_integer(addr)) <= di;

Read / write synchronization - 1

 Read first

 Old contents are read before new contents are loaded

 No-change

 Data output does not change while new contents are loaded

if (clk'event and clk = '1') then

 if en = '1' then

 if we = '1' then

 RAM(conv_integer(addr)) <= di;

 end if;

 do <= RAM(conv_integer(addr));

 end if;

end if;

if (clk'event and clk = '1') then

 if en = '1' then

 if we = '1' then

 RAM(conv_integer(addr)) <= di;

 else

 do <= RAM(conv_integer(addr));

 end if;

 end if;

end if;

Read / write synchronization - 2

 Write first

 New contents are immediately made available for reading

 or using a shared variable:

if (clk'event and clk = '1') then

 if en = '1' then

 if we = '1' then

 RAM(conv_integer(addr)) <= di;

 do <= di

 else

 do <= RAM(conv_integer(addr));

 end if;

 end if;

end if;

if (clk'event and clk = '1') then

 if en = '1' then

 if we = '1' then

 RAM(conv_integer(addr)) := di;

 end if;

 do <= RAM(conv_integer(addr));

 end if;

end if;

RAM example - 1

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity RAM64x16 is

 port(

 CLK, WE : in std_logic;

 ADDR : in std_logic_vector(5 downto 0);

 DI : in std_logic_vector(15 downto 0);

 DO : out std_logic_vector(15 downto 0)

);

end RAM64x16;

architecture behv of RAM64x16 is

 type ram_type is array (63 downto 0) of

std_logic_vector (15 downto 0);

 signal RAM: ram_type;

begin

 process(CLK)

 begin

 if (CLK'event and CLK = '1') then

 if WE = '1' then

 RAM(conv_integer(ADDR)) <= DI;

 end if;

 end if;

 end process;

 DO <= RAM(conv_integer(ADDR));

end behv;

64x16 Single port RAM with asynchronous read

IO Pins Description

CLK Positive-Edge Clock

WE Write enable

ADDR Address port

DI Data input

DO Data output

Asynchronous read forces

implementation in distributed RAM

RAM example – 2a

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity RAM64x16 is

 port(

 CLK, WE, EN : in std_logic;

 ADDR : in std_logic_vector(5 downto 0);

 DI : in std_logic_vector(15 downto 0);

 DO : out std_logic_vector(15 downto 0)

);

end RAM64x16;

architecture behv of RAM64x16 is

 type ram_type is array (63 downto 0) of

std_logic_vector (15 downto 0);

 signal RAM: ram_type;

begin

 process(CLK)

 begin

 if (CLK'event and CLK = '1') then

 if EN = '1' then

 if WE = '1' then

 RAM(conv_integer(ADDR)) <= DI;

 end if;

 DO <= RAM(conv_integer(ADDR));

 end if;

 end if;

 end process;

end behv;

64x16 Single port RAM, read-first mode

IO Pins Description

CLK Positive-Edge Clock

WE Write enable

EN RAM enable

ADDR Address port

DI Data input

DO Data output

By default this memory will be

implemented in a BRAM

RAM example - 3

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity RAM128x8 is

 port(

 CLK, WE, RE : in std_logic;

 WADDR, RADDR : in std_logic_vector(6 downto 0);

 DI : in std_logic_vector(7 downto 0);

 DO : out std_logic_vector(7 downto 0));

end RAM128x8;

architecture behv of RAM128x8 is

 type ram_type is array (127 downto 0) of

std_logic_vector (7 downto 0);

 signal RAM : ram_type;

begin

 process (CLK)

 begin

 if (CLK'event and CLK = '1') then

 if (WE = '1') then

 RAM(conv_integer(WADDR)) <= DI;

 end if;

 if (RE = '1') then

 DO <= RAM(conv_integer(RADDR));

 end if;

 end if;

 end process;

end behv;

128x8 Simple Dual port RAM, read-first mode

IO Pins Description

CLK Positive-Edge Clock

WE Write enable

RE Read enable

ADDR Address port

DI Data input

DO Data output

Common clock and separate enable

signals for the read and write ports

FIFO

 A FIFO (First In First Out) is a storage element where the

first data that are pushed (stored) in the FIFO are the first

data to be popped (read) from the FIFO

16

FIFO

FIFOs are used for:

 buffering

 flow control

 clock domain crossing:

When different parts of the design use different clock

frequencies a dual clock FIFO is used to synchronize the

data flow between the two different parts

17

FIFO

 A FIFO is usually implemented as a memory with a control

logic that controls the read/write pointers according to the

FIFO operation.

 Useful FIFO flags:

 Full

 Empty

 Valid Data

 Almost Full

 Almost Empty

18

FIFO

 You can write code to implement a FIFO on VHDL

 but….

Perhaps it’s better that someone else does this for you!!!

19

Coregen
 A core, also referred to as an IP core, is a pre-made component

that can be used directly in your HDL design.

 Usually the available cores are optimized for time and/or space
performance.

 Cores can be configured to suit your design’s requirements.

 LogiCOREs are those cores provided free by Xilinx.

 Available LogiCORE components range from simple gate
components to memory components, filters, networking
components, image processing components and many others.

20

Coregen

 Coregen can be invoked as a standalone application from

the Xilinx tools

 You must create a Coregen Project, define the target device, save it

on a separate folder

 Or it can be added as a new source from the ISE Project

Navigator

 It is integrated in the current project and saved with the rest of the

source files

21

Coregen

 Coregen generates:

 The netlist (.ngc file)

Binary Xilinx implementation netlist file containing the

information required to implement the module in a Xilinx (R)

FPGA.

 VHDL Wrapper File (.vhd file)

VHDL wrapper file provided to support functional

simulation. This file contains simulation model customization

data that is passed to a parameterized simulation model

for the core.

22

Coregen

 VHO Template File (.vho file)

VHO template file containing code that can be used as a

model for instantiating a CORE Generator module in a

VHDL design.

 XCO CORE Generator Input File (.xco file)

CORE Generator input file containing the parameters used

to regenerate a core.

23

Coregen

 Implementation:

 Netlist

 Instantiate the component in the hierarchy

 Simulation

 Simulation model

 Call the XilinxCoreLib library:

 library XILINXCORELIB;

 use XILINXCORELIB.all;

24

Component Instantiation – Port Map

 To instantiate a component you must first load it in the

declarative part of the architecture

 Instantiate and connect it via port map

 e.g. an entity of an Inverter

entity INV is

port (A: in STD_LOGIC;

 F: out STD_LOGIC);

end INV;

 25

Component Instantiation – Port Map

26

architecture STRUCTURE of MUX2 is

 component INV

 port (A: in STD_LOGIC;

 F: out STD_LOGIC);

 end component;

 signal SELB: STD_LOGIC;

 begin

 G1: INV port map (SEL, SELB);

-- G1: INV port map (A => SEL,

-- F => SELB);

end;

