
Introduction to VHDL

MARIE CURIE IAPP: FAST TRACKER FOR HADRON COLLIDER EXPERIMENTS

1ST SUMMER SCHOOL: VHDL BOOTCAMP
PISA, JULY 2013

Calliope-Louisa Sotiropoulou
PhD Candidate/Researcher

Aristotle University of Thessaloniki

Introduction to VHDL

2

Introduction – VHDL

 What is VHDL?

A Very Hard and Difficult Language…

3

Introduction – VHDL

 Very High Speed Integrated Circuit –

Hardware Description Language

 VHDL originated in the early 1980s

 The American Department of Defense initiated the development of

VHDL in the early 1980s

 because the US military needed a standardized method of describing

electronic systems

 VHDL was standardized in 1987 by the IEEE

4

Gajski’s Y Chart

Each axis represents type of
description

– Behavioral

 Defines outputs as function of
inputs

 Algorithms but no implementation

– Structural

 Implements behavior by
connecting components with
known behavior

– Physical

 Gives size/locations of
components and wires on
chip/board

– Design process is illustrated by
travel route

5

VHDL
 VHDL is a programming language that allows one to model

and develop complex digital systems in a dynamic
environment.

 Allows you to designate in/out ports (bits) and specify
behavior or response of the system.

 With VHDL we can design a system/circuit Something
that physically exists

 Or we can model a system’s/circuit’s behavior

6

Additional Benefits of VHDL

 Allows for various design methodologies :

Top down, bottom up, delay of detail

 Very flexible in its approach to describing hardware

 Provides technology independence:

VHDL is independent of any technology or process

(ASIC, FPGA...)

However VHDL code can be written and then targeted for

many different technologies.

 Describes a wide variety of digital hardware

 Mix descriptions: behavioural with gate level description

7

VHDL - Hierarchy

 Allows Top-Down Design Hierarchy

 A hierarchical design consists of modules which consist of

submodules, VHDL code or combination of both

 Goal: Reduce the complexity of the design and allow for

easier management

 Result: Faster and more effective development of

complicated systems

8

VHDL - Hierarchy

 Black Box Principle:

At every hierarchy level only the absolutely necessary

information is disclosed

 Input/Output Ports and their behavior

9

VHDL – Basic Structure

 Every component consists of two parts:

 Entity: Input/Output ports and generics

 Architecture: Description of the component’s operation in either

behavioral or structural level

 We can even have an entity with multiple architectures

10

Architecture

Entity

IN OUT

Component
IN OUT

VHDL – Code Structure

 Basic elements of code structure:

 Library declarations : The list of libraries/packages which will be

used for the code

 Entity: Defines the input/output ports

 Architecture: Defines the component operation

11

Library Declarations

ENTITY

ARCHITECTURE

Code

Structure

LIBRARY

PACKAGE

FUNCTIONS

PROCEDURES

COMPONENTS

DATA TYPES

VHDL – Basic Structure

12

VHDL – Basic Structure

13

Library Declarations
 Declaring and using a VHDL library

 LIBRARY <library name >;

 USE <library name >. <package name>. <package parts>;

 Usually at least three packages from three libraries are needed:
ieee.std_logic_1164 (lib. ieee), standard (lib. std), work

 LIBRARY ieee;

 USE ieee.std_logic_1164.all;

 LIBRARY std;

 USE std.standard.all;

 LIBRARY work;

 USE work.all;

14

Library Declarations
Libraries std and work are always visible and do not need to be declared

 Include library ieee; before entity declaration

 ieee.std_logic_1164 defines a standard for designers to use in

describing interconnection data types used in VHDL modeling

 The ieee library needs to be declared when the std_logic (std_ulogic)

data type is used

 ieee.numeric_std provides a set of arithmetic, conversion, comparison

functions for signed, unsigned, std_ulogic, std_logic, std_logic_vector

15

Library Declarations (numeric_std)

 There are two basic arithmetic libraries:

 The std_logic_arith:

It was created by Synopsis and it was included in their IEEE VHDL

packages In the future it will not be supported (someday)

Usually combined with the unsigned and signed libraries. The problem

is only one type (signed or unsigned logic) can be used in every entity

 The numeric_std:

The official IEEE library

 Numeric_std does not attempt to imply a numerical interpretation on

SLV(std_logic_vector) , but rather defines related types UNSIGNED

and SIGNED which have both numerical and bitwise interpretations

16

Signed/Unsigned Logic (Just in case…)

 A numeric variable is signed if it can represent both positive

and negative numbers, and unsigned if it can only represent

non-negative numbers (zero or positive numbers).

 For example:

an 8bit integer variable if it is unsigned can represent

values from 0255

an 8bit integer variable if it is signed can represent values

from -128127

17

http://en.wikipedia.org/wiki/Positive_number
http://en.wikipedia.org/wiki/Negative_number
http://en.wikipedia.org/wiki/Non-negative
http://en.wikipedia.org/wiki/Non-negative
http://en.wikipedia.org/wiki/Non-negative

The std_logic and std_logic_vector types
 STD_LOGIC is defined in the library std_logic_1164.This is a

nine valued logic system

 It has 9 values: 'U', 'X', '0', '1', 'Z', 'W', 'L' ,'H' and '-'.
The meaning of each of these characters are:
U = uninitialized (unresolved)
X = unknown - a multisource line is driven '0' and '1'
simultaneously (*)
0 = logic 0
1 = logic 1
Z = high impedance (tri state)
W = weak unknown
L = weak "0"
H = weak "1"
- = dont care

Type std_logic is unresolved type because of 'U','Z' etc.

18

Resolving the std_logic type

 Resolving signal values when they are driven by more than

one source

19

X 0 1 Z W L H -

X X X X X X X X X

0 X 0 X 0 0 0 0 X

1 X X 1 1 1 1 1 X

Z X 0 1 Z W L H X

W X 0 1 W W W W X

L X 0 1 L W L W X

H X 0 1 H W W H X

- X X X X X X X X

This is probably a good time to…

Ask you to refresh your memory on…

 Binary numeral system

 Hexadecimal numeral system

 Boolean logic

20

VHDL – Basic Structure

21

Entity
Defines the communication (input/output ports) of the design with its
environment.

Declares the:
 ENTITY name which is the same as the component name

 The INPUT/OUTPUT ports/signals

 Also the GENERIC values that need to be passed to the entity by
the environment

Syntax:
Entity <identifier_name> is

 port ([signal] <identifier> : [mode] <type_indication> ;

 [signal] <identifier> : [mode] <type_ indication >) ;

 end [<identifier_name>] ;

22

Port Modes
 In: input port

A variable or a signal can read a value from a port of mode in,
but is not allowed to assign a value to it.

 Out: output port
It is allowed to make signal assignments to a port of the mode
out, but it is not legal to read from it.

 Inout: bi-directional port
Both assignments to such a port and reading from it are allowed.

 Buffer: output port with read capability
It differs from inout in that it can be updated by at most one
source, whereas inout can be updated by zero or more sources.

 Linkage:
The value of the port may be read or updated, but only by
appearing as an actual corresponding to an interface object of
mode linkage.

23

Generics

 Generics are a means of passing specific information into

an entity. They do not have a mode (direction):

24

entity PARITY is

generic (N : integer);

port (

 A : in std_logic_vector (N-1 downto 0);

 ODD : out std_logic

);

end PARITY;

VHDL – Basic Structure

25

Architecture
Defines the operation of the component/design

Consists of:
the declarations of the internal signal/variables etc.

the description of the component operations

Syntax:
Architecture <architecture_name> of <entity_identifier> is

[declarative_part]

 begin

[architecture_statement_part]

 end <architecture_name>;

26

Architecture
Every component can have more than one architectures but only one
can be active at a time:

Entity nand is

 port (a, b : in std_logic;

 c : out std_logic);

 end nand ;

27

Architecture nand_struct of nand is

Signal int : std_logic;

 begin

int <= a and b;

c <= not int ;

 end nand ;

Architecture nand_behav of nand is

 begin

 c <= a nand b ;

 end nand ;

Entitiy

Arch. 1 Arch. 2 Arch. 3

One bit adder

28

library ieee;

use ieee std_logic_1164.all;

entity HA is

port (a, b : in std_logic;

 c, s : out std_logic);

end HA;

architecture rtl of HA is

begin

s <= a xor b;

c <= a and b;

end rtl;

Library Declarations

ENTITY

ARCHITECTURE

a

b

s

c

D-flip flop with an asynchronous reset

29

library ieee;

use ieee std_logic_1164.all;

entity dff is

port (d, clk, rst : in std_logic;

 q : out std_logic);

end dff ;

architecture behavior of dff is

begin

 process (rst, clk)

 begin

 if (rst=‘1’) then;

 q<=‘0’;

 elsif (clk’event and clk=‘1’);

 q<=d;

 end if;

 end process;

end behavior;

Classes – Object - Data Types

 Every object belongs to a class and has a specific data type

 Classes: signals, variables, constants

30

Class Object Data Type

Signal a: std_logic

Data Types
Predefined data types

 Bit and bit_vector (package: standard – lib: std)

 Std_logic and Std_logic_vector (pack. std_logic_1164 – lib.ieee)

 Boolean (package: standard – lib: std)

 Integer (package: standard – lib: std)

 signed/unsigned (package: numeric_std – lib: ieee)

 Natural (synthesizable)

 Real (non synthesizable) (package: standard – lib: std)

 Physical (non synthesizable)

 ASCII (non synthesizable)

User Defined Data Types

Arrays

VHDL is very strict with data compatibility

31

Vectors

architecture rtl of ex is
signal a,b, c : std_logic_vector (2 downto 0);
signal d : std_logic_vector (0 to 2);
Begin
 a <= d;
 b <= c;
End;

When values are assigned to a vector the size and the

direction of the vector must be taken into account

32

a(2) <= d(0); b(2) <= c(2);
a(1) <= d(1); b(1) <= d(1);
a(0) <= d(2); b(0) <= d(0);

VHDL Operators
 Value assignment operators:

Used to assign values to SIGNALS, VARIABLES and
CONSTANTS

 ‘<=’ for SIGNALS

 ‘:=’ for VARIABLES, CONSTANTS, GENERIC and initial values

 ‘=>’ for component signals and for the OTHERS command

signal x : std_logic;
variable y : std_logic_vector (3 downto 0);
signal w : std_logic_vector (0 to 7);
…
x <=‘1’;
y := “0010”;
w <= (0=>’1’, OTHERS => ‘0’)

33

VHDL Operators

34

VHDL Operators

35

VHDL Operators

(Overloaded for Numeric_std)

36

VHDL Operators

(Overloaded for Numeric_std)

37

VHDL – Basic Structure

38

Concurrent vs Sequential VHDL

• VHDL provides two different types of execution:

sequential and concurrent.

• Different types of execution are useful for

modeling of real hardware.

• Supports various levels of abstraction.

• Sequential statements view hardware from a

“programmer” approach.

• Concurrent statements are order-independent and

asynchronous.

39

Concurrent VHDL

 Hardware operates in parallel

 Therefore structures are needed to model this behaviour

 Concurrent statements

 Concurrent objects - Signals

VHDL signals model actual connections (wiring and buses)

40

Concurrent VHDL

 The sequence of the signal assignments in concurrent VHDL is

irrelevant

41

Architecture example of ex is

begin

 a <= b;

 b <= c;

end example;

Architecture example of ex is

begin

 b <= c;

 a <= b;

end example;

C B A

Concurrent Statements

 In concurrent code can be used:

 - Operators

 - When (When/Else ή With/Select/When)

 - Generate

 - Block

 Usually for more complicated designs which must be

described behaviourally sequencial code is preferred

42

4-to-1 Multiplexer
 library ieee;

 use ieee.std_logic_1164.all;

 entity mux is

 port (a, b, c, d, s0, s1: in std_logic;

 y: out std_logic);

 end mux;

architecture operators of mux is

begin

 y <= (a and not s1 and not s0) or

 (b and not s1 and s0) or

 (c and s1 and not s0) or

 (d and s1 and s0);

end operators ;

43

Concurrent statements - When
Syntax:

<target> <= <expres.> [after <expres.>] when <expres.> else

 <expres.> [after <expres.>] … ;

 The sequence of the arguments is very important because

the code inside the when statement is sequential

44

Concurrent statements - When

45

Architecture rtl of ex is

begin

q <= a when data =“00”
else

 b when data =“11”
else

 c;

end;

Architecture rtl of three_state is

begin

dbus <= data when enable = ‘1’ else

 ‘Z’;

end;

a

b

c

q

data

enable

data dbus

dbus <= data when enable =
‘1’

 else (others =>‘Z’);

Concurrent statements - With
Syntax:
<with> <expression> select

<target> <= <expression> when <chose>;

All signal combinations must be enumerated
 Use of when others for the rest of the cases

Less flexible than when

 Allows only one expression

46

entity example is

port (a,b,c : in std_logic;

 data : in std_logic_vector (1 downto 0);

 q : out std_logic);

end example;

architecture rtl of example is
begin
with data select
q <= a when “00” ,
 b when “11” ,
 c when others;
end;

4-to-1 Multiplexer with when and with
 library ieee;

 use ieee.std_logic_1164.all;

 entity mux is

 port (a, b, c, d: in std_logic;

 sel: in std_logic_vector (1 downto 0);

 y: out std_logic);

 end mux;

architecture mux1 of mux is

begin

 y <=a when sel="00" else

 b when sel="01" else

 c when sel="10" else

 d;

end mux1;

47

architecture mux2 of mux is

begin

 with sel select
 y <= a when "00",
 b when "01",

 c when "10",
 d when others;
end mux2;

Sequential VHDL

 Sequential structures are executed in the sequence they

appear in the VHDL code

 They are used for sequential data processing

 Sequential Commands:

 IF

 WAIT

 CASE

 LOOP

48

Sequential Structures
If-then-else statement

Case statement

Variable declaration

Loop statement

Return statement

Null statement

Wait statement

49

architecture rtl of ex is

concurrent declaration part

begin

concurrent VHDL

process (…)

sequential declaration part

 begin

 sequential VHDL

 end process;

concurrent VHDL

end;

VHDL Process

 The Process is a concept which derived from computer

programming

 It operates in two different states:

 Wait

 Execute

 More than one process

can be executed in parallel

50

Wait

Execute

process A

process B

process C

VHDL Process - Syntax
[<process_name> :] process [(sensitivity_list)]

 [<process_declarative_part>]

begin

 <process_statement_part>

end process [<process_name>];

 The Process Execution starts when a signal from the

sensitivity list changes value

 There are two kinds of Process statements

 Combinational

 Clocked

51

Combinational Processes
process (a, b, s)
begin
 if (s=‘1’) then
 y <= a;
 else y <= b;
end process;

 The above code leads to a 2-to-1 mux

 In the combinational processes all the input signals must be
in the sensitivity list

 All the input/output combinations must be covered by the
code or unwanted latches may appear

52

Clocked Processes

 Used for modeling synchronous sequential circuits

 A change in the value of the clock signal is required to

initiate a clocked process

 A synchronous sequential design changes state only when

the clock signal changes value (clock edges)

53

Clocked Processes

 DFF The D-type flip-flop samples an incoming signal at

the rising (or falling) edge of a clock. This example has an

asynchronous, active-high reset, and samples at the rising

clock edge.

54

DFF : process(RST, CLK)

 begin

 if RST = '1' then

 Q <= '0';

 elsif rising_edge(CLK) then

 Q <= D;

 end if;

 end process DFF;

DFF : process(RST, CLK)

Begin

if RST = '1' then

 Q <= '0';

 elsif CLK'event and CLK = '1' then

 Q <= D;

end if;

end process DFF;

http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Flip-flop_(electronics)
http://en.wikipedia.org/wiki/Flip-flop_(electronics)

And now…

 Time for a break???

55

Lab 1: Writing your first ever VHDL code

MARIE CURIE IAPP: FAST TRACKER FOR HADRON COLLIDER EXPERIMENTS

1ST SUMMER SCHOOL: VHDL BOOTCAMP
PISA, JULY 2013

Calliope-Louisa Sotiropoulou
PhD Candidate/Researcher

Aristotle University of Thessaloniki

Lab 1: Writing your first ever VHDL code

Writing VHDL code

 VHDL is of course plain text, so you just need a plain text

editor to write it

 So what you need is a good editor of your choice

(notepad++, ultraedit, emacs etc.) with the VHDL language

template loaded

 The real issue is “compiling” the code which totally depends

on the target platform of the implementation

 Is it an ASIC? Is it an FPGA? Whose vendor FPGA is it?

58

Xilinx Tools – Where and how…

 Xilinx offers a free version of their tool, the XILINX ISE

Webpack

 You can also have a trial version for 30 days of the full

version

 You need to make a Xilinx account to download the

software (www.xilinx.com)

59

http://www.xilinx.com/

Xilinx ISE Project Navigator

 So now we move to the computers…

Finally…..

60

XILINX ISE Design Suit

 The ISE Design Suite is an Electronic Design Automation

(EDA) tool for the FPGA families produces by Xilinx Inc.

 It supports Verilog and VHDL design entry, place and route

(PAR), verification and debug and bitstream generation for

device programming.

 The ISE software controls all aspects of the design flow.

 Through the Project Navigator interface, you can access all

of the design entry and design implementation tools.

 You can also access the files and documents associated with

your project.

61

Xilinx ISE Design Flow
Design Verification

Synthesis

Implementation

Entry

Xilinx Device

Programming

Post-Synthesis

Simulation

Behavioral

Simulation

Timing

Simulation

Static Timing

Analysis

In-Circuit

Verification

Back

Annotation

62

XILINX Synthesis
 During HDL synthesis, XST analyzes the HDL code and attempts to

infer specific design building blocks or macros (such as MUXes,
RAMs, adders, and subtractors) for which it can create efficient
technology implementations.

 To reduce the amount of inferred macros, XST performs a
resource sharing check. This usually leads to a reduction of the
area as well as an increase in the clock frequency.

 Finite State Machine (FSM) recognition is also part of the HDL
synthesis step. XST recognizes FSMs independent of the modeling
style used.

 To create the most efficient implementation, XST uses the target
optimization goal, whether area or speed, to determine which of
several FSM encoding algorithms to use.

63

