
Introduction to FPGAs

MARIE CURIE IAPP: FAST TRACKER FOR HADRON COLLIDER EXPERIMENTS

1ST SUMMER SCHOOL: VHDL BOOTCAMP
PISA, JULY 2013

Calliope-Louisa Sotiropoulou
PhD Candidate/Researcher

Aristotle University of Thessaloniki

VHDL Bootcamp - DISCLAIMERS

 The school targets VHDL beginners with an experience in

computer programming

 The purpose of this course is to show you what a powerful

tool VHDL and FPGAs are together with the XILINX tools

 We will be able to use VHDL but it is impossible to learn

VHDL in 4 days…

 As with everything in life…

Practice makes perfect!

2

Introduction to FPGAs

 What is an FPGA

 Why we use FPGAs

3

Introduction – Embedded Systems

 An embedded system is a computer system designed to do

one or a few dedicated and/or specific functions often with

real-time computing constraints. It is embedded as part of a

complete device often including hardware and mechanical

parts.

 Embedded systems are application specific

 Optimize to reduce size

 Optimize to reduce cost

 Optimize to increase performance

 Optimize to increase reliability

4

Introduction – FPGA Technology

 Field Programmable Gate Arrays (FPGAs) are

programmable semiconductor devices that are based

around a matrix of configurable logic blocks (CLBs)

connected via programmable interconnects.

 As opposed to Application Specific Integrated Circuits

(ASICs) where the device is custom built for the particular

design, FPGAs can be programmed to the desired

application or functionality requirements.

5

Introduction –

Processing Elements

6

Flexibility, Reduced Prototyping Cost, Reduced Man-hours

Performance, Reduced Power Consumption, Size and Mass Production Cost

Application

&

 Specs

Programmable
Non-Prog.

ASIC

Processor

GPP ASIP RISP

Configurable

FPGA

CPLD

Semi-Custom

MGA Standard Cell

Full Custom

Transistor-

Physical Level

Introduction – FPGA Technology

 Modern FPGA devices

 Performance

 Area

 Application domain specific devices

 Reduction of development costs

 Time-to-market

7

Programmable logic blocks

 The “heart” of every FPGA

 Logic functions implemented in look-up tables (LUTs)

 Clocked storage elements (flip-flops)

 N-to-1 Multiplexers

16-bit SR

flip-flop

clock

mux

y

q
e

a

b

c

d

16x1 RAM

4-input

LUT

clock enable

set/reset

8

Programmable logic blocks - 2

 Flexible and versatile

 Combinational logic (adders, subtractors, shifters,etc.)

 Sequential logic (registers, data pipelines, ROMs, RAMs, etc.)

 Combine logic blocks to form larger logic functions

 Architecture varies with vendor

 Base functionality is essentially the same

 HDL description of a circuit abstracts implementation

 In most cases, tools map code to hardware efficiently

 However, knowledge of the underline vendor architecture is essential

for optimal circuit implementation !

9

Vendor specific PLBs

Vendor
Programmable logic block hierarchy

1st Level 2nd Level

Xilinx Configurable Logic Block (CLB) Slice

Altera Logic Array Block (LAB) Adaptive Logic Module (ALM)

Lattice Programmable Function Unit (PFU) Slice

MicroSemi (Actel) VersaTile -

 Each FPGA vendor specifies its own PLB architecture

10

Logic Implementation on an FPGA

 The truth table of a simple operator is loaded to a LUT

 The two combined inputs are used as address

 The output is stored on a flip-flop for synchronization

11

VHDL Code

{….

a<=b and c

….}

Truth Table

b c a

 0 0 0

 0 1 0

 1 0 0

 1 1 1

2 - Input

LUT
FF

Clock

Inputs

0 0 0 1

Routing on an FPGA

 Programmable connection and switch boxes

12

I/ O PAD

Connection Box

Switch Box

BLE BLEBLE

BLE BLE BLE

CLB CLB CLB

CLBCLBCLB

ALTERA Stratix V, Logic Array Block (LAB)

ALTERA Stratix V, Adaptive Logic Module (ALM)

Xilinx Virtex-5, Configurable Logic Block (CLB)

Xilinx Virtex-5, Slice (SLICEM)

Hard Blocks

 Built-in functionality for a multitude of applications

 Programmable I/O (LVDS, SSTL, HSTL, RSDS, and more)

 High speed serializers/deserializers (SerDes) for 10Gbs rates

 Embedded RAM

 Embedded DSP blocks

 Embedded processors (PPC440, ARM Cortex-A9, ARM Cortex-M3)

 Multi clock, multi phase clock managers

 Significant advantages over general purpose logic

 Tight connection to the rest of the FPGA fabric

17

Hard blocks - 2

 Design entry varies depending on the hard block

 General HDL (VHDL, Verilog) coding

 Vendor specific HDL coding

 IP cores

 Vendor tools schematic entry

 Some blocks can be utilized in many different ways

 Some require specific design entries

 Knowledge of vendor specific architecture is essential

18

Xilinx ISE Design Flow
Design Verification

Synthesis

Implementation

Entry

Xilinx Device

Programming

Post-Synthesis

Simulation

Behavioral

Simulation

Timing

Simulation

Static Timing

Analysis

In-Circuit

Verification

Back

Annotation

19

Design with HDL

 Advantages of using an HDL (VHDL or Verilog)

 Top-down approach for large projects

 Functional simulation early in the design flow

 Decreased design time

 Reduced number of errors

 Allows you to apply the automation techniques used by the synthesis

tool

 Early testing of various design implementations

 Reuse of register transfer level (RTL) code

20

Design entry for Xilinx FPGAs
 Instantiation

 Control the exact placement of the individual blocks

 Inference

 Complete flexibility and portability of the code to multiple architectures

 Inference gives the tools the ability to optimize for performance, area, or
power

 Macro Support

 Used to instantiate primitives that are too complex to instantiate

 Coregen & Wizards

 Through Xilinx CORE Generator or other Wizards

 For large blocks of any FPGA primitive that cannot be inferred

 We have to re-generate our cores for each architecture that we are
targeting

21

