Slow Control PMT rates

Period: 26/04/2013 \rightarrow 16/06/2013

M.G. Pellegriti LNS-INFN

Outline

- Use of Slow Control rates to extract baselines, burst fractions for the estimation of the ${ }^{40} \mathrm{~K}$ contribution and bioluminescence.
- Comparison of Slow Control rates with Post-Trigger rates to test the reliability of Slow Control data analysis.
- Baseline and burst fraction $1 \mathrm{~h}, 24 \mathrm{~h}$ and 15 min step.
- Comparison with Antares data.
- Correlation of burst trends with Compass behavior.

COMPARISON WITH RANDOM POST-TRIGGER

We are comparing Slow Control rates with those coming from Post-Trigger (Biagi-Chiarusi). We are analysing the data in the same period:

Run 412 file 0
Data are sampled once per second, and the rates is measured in a time window $\Delta t=10 \mathrm{~ms}$.

Start: 27/04/2013 01:34:28
Stop: 27/04/2013 04:17:19

PMTRate1_Floor1_run412_file0.txt

Analysis performed by using TestSite Code @C.Distefano

\rightarrow Gaussian mean rate values $=50 \div 65 \mathrm{kHz}$

\rightarrow Increase of the B.F. with floor number up to the 6th floor

Differences between S.C. and TRIDAS

\rightarrow S.C. and Tridas rates values generally differ for less than 3 kHz .
A further check should be performed for the cases in which the difference is of about 5 KHz .
\rightarrow Sigma values of gaussian fits range from 2,5 up to 5 kHz (worst cases).
\rightarrow S.C. rates are systematically larger, this is probably due to the after-pulse effects.

Open questions:

- Are the present differences changing from run to run?
- We need to better understand the causes of the systematic discrepancies.

Test needed to be performed:

- More systematic comparison: ex.: Compare more runs...
- Estimation of Burst Fraction from Post-Trigger files?
- Time window analysis with different time windows:
\rightarrow 1h
$\rightarrow 24 \mathrm{~h}$
$\rightarrow 15 \mathrm{~min}$ for the comparison with Antares

1h- step window

Global behavior of the baselines and burst fraction @ 1h step analysis.

Burst Fraction (>100 kHz) - $\mathbf{1 h}$

Global behavior of the baselines and burst fraction @ 24h step analysis.

Yaw

Pitch

Roll

Roll-Pitch correlations

PMT BASELINE COMPARISON

Nemo- Phase2

Antares
Tamburini et al. accepted PLOS ONE

38.49-Salinity

12.94 - Temperature $\left({ }^{\circ} \mathrm{C}\right.$)
12.92 -

12.88
40. Current speed (cm s ${ }^{-1}$)

01-Jan-09 01-Feb-09 01-Mar-09 01-Apr-09 01-May-09 01-Jun-09 01-Jul-09

Median rates are calculated over 15 minutes

To be understood: time correlations between higher amplitude burst fractions (rate) and compass variations.

Citabile come:
Grupoo Analisi

