

Short Distance Neutrino Oscillations with BoreXino

Laboratori Nazionali del Gran Sasso Jul. 4th, 2013

Marco Pallavicini on behalf of the Borexino Collaboration

Dipartimento di Fisica – Università di Genova & INFN Sezione di Genova

- Mainly, a solar neutrino experiment
 - $v + e^- \rightarrow v + e^-$ in organic liquid scintillator
 - Very low background obtained with selection, shielding e purifications
 - Low energy threshold, good energy resolution, spatial reconstruction, pulse shape α/β identification

• but also

• Very good anti-neutrino detection (e.g. geo-neutrinos)

- **sub-MeV** v_e **detection:** proved by **7Be** and **pep**
- sensitivity: as low as a few cpd/100 t
 - *pep:* 3.1 ± 0.6(stat) ± 0.3(sys) cpd/100 t

- **v**_e detection: proved by geo-neutrinos
- total background:
 - << 1 events / year in the whole volume

Borexino background today

- A significant **purification** effort done in 2010/2011 to improve purity further
 - Very effective on ⁸⁵Kr, good on ²¹⁰Bi, excellent for ²³⁸U and ²³²Th about 3 months of data early 2012

Thursday, July 4, 13

INFN

SOX: Short distance v_e Oscillations with BoreXino

• Science

- Motivations
 - Search for sterile neutrinos or other short distance effects on P_{ee}
 - Measurement of ϑ_W at low energy (- 1 MeV)
 - Measurement of neutrino magnetic moment
 - Check of g_V e g_A at low energy

• Technology

- Neutrino source: ⁵¹Cr
- Anti-neutrino source: 144Ce

• Project

- SOX-A 5^ICr external
- SOX-B 144Ce external
- SOX-C 144Ce internal

ERC Ideas approved

European Research Council ERC-2012-AdG Advanced Investigator Grant SOX: Short distance neutrino Oscillations with BoreXino

SEVENTH FRAMEWORK PROGRAMME

"Ideas" specific programme European Research Council

Grant agreement for Advanced Grant

Annex I - Description of Work

Project acronym: SOX Project full title: <u>Short distance neutrino O</u>scillations with Bore<u>X</u>ino Grant agreement N. 320873 Duration: 60 months Date of preparation of annex 1: 23 - 10 - 2012 Principal Investigator: Prof. Marco Pallavicini Host Institution: Istituto Nazionale di Fisica Nucleare (INFN) and Laboratori Nazionali del Gran Sasso (LNGS)

- The idea to deploy a **source in Borexino** dates back to the beginning of the project
 - Successfully implemented by Gallex (LNGS) and SAGE (Russia)
 - Recently, revised and re-proposed by many authors to search for sterile neutrinos

 N.G. Basov, V. B. Rozanov, JETP 42 (1985) a very incomplete Borexino proposal, 1991 (Sr90) list! J.N.Bahcall, P.I.Krastev, E.Lisi, Phys.Lett.B348:121-123,1995 N.Ferrari, G.Fiorentini, B.Ricci, Phys. Lett B 387, 1996 (Cr51) I.R.Barabanov et al., Astrop. Phys. 8 (1997) See White Paper Gallex coll. PL B 420 (1998) 114 **Done** (Cr51) A.Ianni, D.Montanino, Astrop. Phys. 10, 1999 (Cr51 and Sr90) and references A.Ianni, D.Montanino, G.Scioscia, Eur. Phys. J C8, 1999 (Cr51 and Sr90) therein: SAGE coll. PRC 59 (1999) 2246 **Done** (Cr51 and Ar37) SAGE coll. PRC 73 (2006) 045805 arxiv: C.Grieb, J.Link, R.S.Raghavan, Phys. Rev. D75:093006,2007 1204.5379 V.N.Gravrin et al., arXiv: nucl-ex:1006.2103 C.Giunti, M.Laveder, Phys.Rev.D82:113009,2010 C.Giunti, M.Laveder, arXiv:1012.4356 SOX proposal - ERC 320873 - Feb. 2012 - approved Oct. 2012

- A few well known experimental results do not match the standard three-flavors scenario. In particular:
 - LSND (Los Alamos) in 2001 measured a v_e excess using v_{μ} beam
 - Apparently, a clear effect: **87.9** ± **22.4** ± **6.0** (**3.8** σ)
 - L/E NOT compatible with "solari" oscillations
 - LSND region recently reduced by Icarus data, but not excluded

- Gallex and SAGE in the 90's has made a calibration of their detector with an artificiale neutrino source
 - Strong enough to produce a detectable neutrino flux (about the Sun at 10 m)
 - A portable Sun!
 - Both experiments show a deficit w.r.t. expectations

 $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^{-}$

• Reactor anomaly

• Many experiments at small L/E from reactors

- Supposedly better calculations of **reactor neutrio fluxes** released recently
- With these new calculations, **neutrino deficit at small L/E is observed**

Thursday, July 4, 13

INFN

Comments on the Science case

- In my opinion, taken individually, each anomaly is **weak**:
 - popular arguments, e.g.
 - LSND region not clearly confirmed by Miniboone, allowed region shrinked significantly by Icarus
 - Gallex and SAGE calibrated their detector with sources. Can we trust the efficiency so much to believe the anomaly ?
 - Can we trust the supposedly better reactor fluxes ? Were previous measurements biased by older calculations?

• BUT

- All anomalies **point consistently in the same direction,** i.e. deficit at small L/E
- If any of them is true, new physics is mandatory
 - High risk, high gain
- Methodologically, the only way to discard a wrong measurement is to do a better one
 - We can't dismiss data based on theoretical prejudice

 Mission: test the existence of low L/E v_e and/or v
_e anomalies by placing well known artificial sources close to or inside Borexino

• SOX-A

- ⁵**Cr** source in pit beneath detector
- 8.25 m from center [2015/2016]

• SOX-B

- ¹⁴⁴Ce-¹⁴⁴Pr source in W.T.
- PPO everywhere to enhance sensitivity
- 7.15 m from center [2015/2016?]

• SOX-C

- 144Ce-144Pr source in the center
- Only after the end of solar program
- More effort and more time
 2016

Artificial neutrino sources

Source	Production	т (days)	Decay mode	Energy [MeV]	Mass [kg/MCi]	Heat [W/kCi]
⁵¹ Cr Ve	Neutron irradiation of ⁵⁰ Cr in reactor Φ _n ≥ 5. 10 ¹⁴ cm ⁻² s ⁻¹	40	EC γ 320 keV (10%)	0.746	0.011	0.19
¹⁴⁴ Ce- ¹⁴⁴ Pr Ve	Chemical extraction from spent nuclear fuel	411	β-	<2.9975	0.314	7.6

LNGS - July. 4th, 2013 Thursday, July 4, 13

M. Pallavicini - Dipartimento di Fisica - Università di Genova & INFN

The tunnel beneath the detector

Data analysis: two techniques

- Total counts: standard "disappearance" experiment
 - Total number of events depends on θ_{14} and (weakly) from Δm_{14}^2
 - Sensitivity depends on:
 - Statistics (source activity)
 - Error on activity (in particular) and on efficiency
 - The relatively short life-time of 51Cr yield useful time-events correlation
 - The background is constant while the signal is not
- **Spatial waves** [C.. Grieb et al., Phys. Rev. D75: 093006 (2007)]
 - With expected Δm² e and ~ I MeV energy, the wavelength is smaller than detector size (-11 m max) and bigger than resolution (- 15 cm)
 - The distribution of events as a function of distance to source shows waves
 - Direct measurement of Δm_{14}^2 and θ_{14}
 - Very powerful and independent. Does not depend on knowledge of source activity.
- The two techniques can be combined in a single counts-waves fit

Geometry with external source

• Volume:

$$V(l) = 2\pi l^2 \left(1 - \frac{d^2 - R^2 + l^2}{2 \ d \ l} \right)$$

• Flux and decay

$$\Phi(l) = \frac{I_0}{4\pi l^2} \tau e^{-\frac{t_D}{\tau}} \left(1 - e^{-\frac{t}{\tau}}\right)$$

• Oscillations (one sterile)

$$\mathbf{P_{ee}} = \mathbf{1.} - \mathbf{sin^2}(\mathbf{2\theta_s}) \cdot \mathbf{sin^2}\left(\frac{\mathbf{1.27}\ \mathbf{\Delta m^2}\ \mathbf{l}}{\mathbf{E}}\right)$$

 The number of v_e-e⁻ events at distance l from the source, with detection threshold T₁ and maximum recoil energy T₂:

$$\mathbf{N_0}(\mathbf{l},\mathbf{T_1},\mathbf{T_2}) = \mathbf{n_e} \ \Phi(\mathbf{l}) \ \mathbf{V}(\mathbf{l}) \ \mathbf{P_{ee}}(\mathbf{l},\mathbf{E}) \int_{\mathbf{T_1}}^{\mathbf{T_2}} \frac{d\sigma_{\mathbf{e}}(\mathbf{E},\mathbf{T})}{d\mathbf{T}} d\mathbf{T}$$

Thursday, July 4, 13

16

Waves with \overline{v}_e and space-energy correlation

LNGS - July. 4th, 2013

Thursday, July 4, 13

- Phase I can happen any time during next solar neutrino phase
 - 2015 is a realistic scenario

M. Pallavicini - Dipartimento di Fisica - Università di Genova & INFN

INFN

- SOX-B can happen any time during next solar neutrino phase
 - 2015 is a realistic scenario 1 y of data taking

• 2016-2017 is a realistic scenario

• desicison to be taken after SOX-A and/or SOX-B results

LNGS - July. 4th, 2013

Thursday, July 4, 13

20

Other low energy neutrino physics

- With both sources (SOX-A and B or C)
 - Independent measurement of gv e ga
 - Test of SM EW running at very low energy
 - Standard Model
 - $g_V = -1/2 + 2 \sin^2 \vartheta_W = -0.038$
 - $g_a = -1/2 = 0.5$

 $g_V^{\nu e} = -0.035 \pm 0.012(\text{stat}) \pm 0.012(\text{syst}),$

```
g_A^{\nu e} = -0.503 \pm 0.006(\text{stat}) \pm 0.016(\text{syst}).
```

Technology: ⁵¹Cr source

- Concept is the same as in Gallex 1994
 - ~36 kg, ⁵⁰Cr enriched at 38% irradiated in a high neutron flux reactor (we may use more material)
 - Candidate reactors: Russia (best), USA, Europe
 - **190 W/MCi** from photons
 - -few µSv/h on surface (required < 100)
- **BUT**: careful **thermal design** to handle **10 MCi (2 kW)**
 - Preliminary studies are encouraging

External T must be acceptable Current value: T=90°C

Internal T must be below syntherization (750°C) Current value: T=260 °C

LNGS - July. 4th, 2013

Thursday, July 4, 13

22

The neutrino generator

Internal design

without cooling fins

with cooling fins

Thermal studies

Bulk temperatures

Surface temperatures

Technology: location for ⁵¹Cr source

LNGS - July. 4th, 2013

- The neutrino generator will enter underground directly
 - It will stay in Hall C 4-6 months

LNGS - July. 4th, 2013 Thursday, July 4, 13 INFN

SOX-C: 144Ce source inside detector

- Very massive source (see M. Cribrier talk this morning)
 - ~ 4 t of shielding
 - Source: spent nuclear fuel from Russia
- **DENSIMET (W)** shielding plus ultra-pure **copper layer** to reduce background
 - W is very dirty for Borexino
 - γ background is a problem if rate too high
 - random coincidences make background
- Source deployment to be studied
 - Either from the top or from the bottom
 - PPO everywhere in the SSS to enlarge active volume (active radius up to 5.5 m)
 - New anti-neutrino trigger
 - Trigger on singles would be too hard, but this is not a problem
 - > 2016. No schedule yet.

Summary

• We plan to perform an extensive search of sterile neutrinos with neutrino and anti-neutrino sources

• SOX-A

- ⁵¹Cr neutrino source (external)
- Tentative schedule: 2015/2016

• SOX-B

- ¹⁴⁴Ce anti-neutrino source (external)
- Tentative schedule: 2015-2016 (TBD)

• SOX-C

- ¹⁴⁴Ce anti-neutrino source (internal)
- No schedule (>2016)

