Microtechnologies for Space Applications at MTLab Facility of FBK-CMM

P. Bellutti – MicroTechnologies Lab

http://mtlab.fbk.eu/en/home

INFN-Space/3
Frascati 19/09/2013

Microtechnologies Lab Facility

Nationwide, the MTLab Facility is the only Public Research site currently providing at the same Location such extensive MOS, MEMS and advanced Radiation Detection R&D and Manufacturing Capabilities, open to both Industrial and Institutional Partners.

MT Facility – Innovation model @ CMM

Centre for Materials and Microsystems-CMM

Silicon Facility Expertise @CMM

TCAD simulation CAD design

Device testing

Material Characterisation:

- XPS
- SIMS
- ToF-SIMS
- TXRF
- AFM
- SEM

Custom CMOS design

Development of ROIC by exploiting state of the art CMOS tech (external services)

Centre for Materials and Microsystems-CMM

MT Facility: MicroFabrication Area

Two separate clean rooms

- 500m² of «derectors» clean room (class 10-100)
- 150m² of clean area (class 100-1000) equipped for MEMS technology

6 inch wafers (Si, Quartz, Glass)

Employees

7 Researchers

9 Technicians

Planar processing capacity: 4000 moves/week (on one shift)

MT Facility: Testing Area

Four labs

- 20m² for manual parametric testing (2 probers)
- 15m² for solar cells qualification
- 60 m² for automatic parametric/functional testing (4 probers)
- 20 m² optical testing

Employees

- 2 Researchers
- 3 Technicians

Testing capacity: 12000 hours/year

MT Facility: Microsystems Integration Area

40m² devoted to:

microassembly, bonding, micromilling/drilling screen printing

1 Researcher

1 Technician

Devices for Space Applications

@ a glance

Production of Microstrip Detectors Technology

AMS experiment (@ISS)

Detector characteristics:

- Area: 7.2x4.2cm²
- double-sided with orthogonal strips

700 in spec detectors produced

ALICE experiment (@CERN)

Detector characteristics:

- Area:7.5x4.2cm²
- double-sided with strips slightly tilted
- AC coupled

600 in spec detectors were fabricated ALICE Industrial Awards in 2006

Pixel Detectors Technology

Medipix 1&2

- Medipix1: pixel size 170x170um²
- Medipix2: pixel size 55x55um²

Substrate thick.: up to 1.5mm

NA48/ALICE experiment

- ALICE SPD layout
- pixel size 50x400um²

300 ladder produced (2006-2007).

Substrate thickness: 200um

3D-Detectors Technology

Ultra radiation-hard silicon particle detectors for future high-energy physics experiments Based on columnar electrodes (Pass through columns)

RF-MEMS Platform

Phototransitors

In three diferent contracts

- CNES
- ESA (optocoupler)

ESA Contract No. 4000102425/10/NL/NR

ASI

Mass Flow Sensors for Cold Gas Microthrusters

Thales Alenia Space for GAIA/LISA Pathfinder

Miniaturised Multi-parameter Cell Analysis

ASI Astralab

MILS ESA Project: CSEM, FBK, Astrium, LZH, EPFL

- FBK was technology provider of SPAD-based CMOS imager for LIDAR
- Different technologies have been assessed (CMOS PMD vs CMOS SPAD, micro mirrors)
- SPAD-based solution was demonstrated to be the best candidate for rendezvous and landing

Silicon Drift Detectors

Gamma-ray spectrum of ⁵⁷Co

LOFT (Large Observatory For x-ray Timingin)

Science: high energy astrophysics - state and nature of matter in ultradense (supra-nuclear) conditions (Equation of State of NS); behaviour of matter under strong gravitational field (General Relativity close to BH) and ultrastrong magnetic field; multi-purpose general observatory (high energy resolution combined with 10-m² effective collecting area).

Enabling Technology: large-area Silicon Drift Detectors (INFN-LHC-ALICE heritage, FBK SDD technology development since 2009, INFN-FBK Loft dedicated development since 2011) enable to deploy 18-m² of X-ray detectors in space

Scientific Consortium: Kaly (PI), UK, France, Germany, Switzerland, Spain, Denmark, Finland, Poland, Czech Rep., USA, Japan, Brazil, India

In Italy: ASI, INAF, INFN, Universities; FEK to produce SDDs, TAS-I running for Prime contractor

The Wide Field Monitor (WFM)

Driving technology: FBK / INFN Trieste Large-area

WFM FoV covers >50% of the LAD-accessible sky at any time, in the 2-50 keV energy range

Centre for Materials and Microsystems-CMM

Silicon Photomultiplier Technology

For calorimetry

SiPM Tech. Road Map

(Red-Green-Blue SiPM)

NUV-SiPM

(Near-UV SiPM)

RGB-SiPM_HD

(Red-Green-Blue SiPM – high density)

Thanks for your Attention

