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●Notation for the mixing angle:

mixing of mass eigenstates

octet-singlet basis quark-flavour basis

with and

1 mixing angle

Assumptions: ● no energy dependence
● 
● no mixing with other pseudoscalars (π0, ηc, glueballs)
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mixing of decay constants

octet-singlet basis

quark-flavour basis
2 decay constants

2 mixing angles

with

and

with

●Notation for the mixing angles of the decay constants
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● Study of the η-η’ system in the two mixing angle scheme

η,η’→γγ decays R. Escribano, J.-M. Frère, ’05
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● Study of the η-η’ system in the two mixing angle scheme
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●

We work in a basis consisting of the states

|ηq〉 ≡
1√
2
|uū + dd̄〉 |ηs〉 = |ss̄〉 |G〉 ≡ |gluonium〉

|η〉 = Xη|ηq〉 + Yη|ηs〉 + Zη|G〉 ,

|η′〉 = Xη′ |ηq〉 + Yη′ |ηs〉 + Zη′ |G〉 ,

The physical states η and η’ are assumed to be the linear combinations 

with X
2
η(η′) + Y

2
η(η′) + Z

2
η(η′) = 1 and thus X

2
η(η′) + Y

2
η(η′) ≤ 1

A significant gluonic admixture in a state is possible only if

Z
2
η(η′) = 1 − X

2
η(η′) − Y

2
η(η′) > 0

Assumptions: ● no mixing with π0 (isospin symmetry)
● no mixing with ηc states
● no mixing with radial excitations

Notation for the gluonic content: phenomenological parametrization
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●Notation for the gluonic content

In absence of gluonium (standard picture)

Zη(η′) ≡ 0
|η〉 = cos φP |ηq〉 − sinφP |ηs〉

|η′〉 = sinφP |ηq〉 + cos φP |ηs〉

with Xη = Yη′ ≡ cos φP

Xη′ = −Yη ≡ sinφP

and X
2
η(η′) + Y

2
η(η′) = 1

where ϕP is the η-η’ mixing angle in the quark-flavour basis related to its octet-singlet
analog through

θP = φP − arctan
√

2 # φP − 54.7◦

Similarly, for the vector states ω and ϕ the mixing is given by 

|ω〉 = cos φV |ωq〉 − sinφV |φs〉

|φ〉 = sinφV |ωq〉 + cos φV |φs〉

where ωq and ϕs are the analog non-strange and strange states of ηq and ηs, respectively.
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● Euler angles

|η〉 = Xη|ηq〉 + Yη|ηs〉 + Zη|G〉

|η′〉 = Xη′ |ηq〉 + Yη′ |ηs〉 + Zη′ |G〉

|ι〉 = Xι|ηq〉 + Yι|ηs〉 + Zι|G〉

In presence of gluonium,

glueball-like state
η(1405)?

X2
η + Y 2

η + Z2
η = 1

X2

η′ + Y 2

η′ + Z2

η′ = 1

X2
ι + Y 2

ι + Z2
ι = 1

XηXη′ + YηYη′ + ZηZη′ = 0

XηXι + YηYι + ZηZι = 0

Xη′Xι + Yη′Yι + Zη′Zι = 0

Normalization: Orthogonality:

3 independent parameters: ϕP, ϕηG and ϕη’G

(

η
η′

ι

)

=

(

cφηη′cφηG −sφηη′cφηG −sφηG

sφηη′cφη′G − cφηη′sφη′GsφηG cφηη′cφη′G + sφηη′sφη′GsφηG −sφη′GcφηG

sφηη′sφη′G + cφηη′cφη′GsφηG cφηη′sφη′G − sφηη′cφη′GsφηG cφη′GcφηG

) (

ηq

ηs

G

)
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●Motivation

KLOE Collaboration, ’07

φP = (39.7 ± 0.7)◦

Z
2

η′ = 0.14 ± 0.04

Rϕ with Z2=0

Y1=η’→γγ/π0→γγ
Y2=η’→ργ/ω→π0γ
Y3=ϕ→η’γ/ϕ→ηγ

Y4=η’→ωγ/ω→π0γ
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Xη′

⎞
φP

Yη′

φ → η
′
γ

η
′
→ ωγ

η
′
→ ργ

42.7
◦
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◦

● Results

Xη′ =
√

2Yη′ =
1
√

3

η=η0

importance of constraining even more ϕ→η’γ✔

More refined data for this channel will contribute decisively to clarify this issue

R. E.scribano and J. Nadal, ‘07

X
2

η + Y
2

η ≤ 1
ϕP=(41.4±1.3)￮

Z2
�� = 0.04± 0.09
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The anomalous magnetic moment of 
the muon

Ballpark prediction for the hadronic light-by-light contribution to the muon (g � 2)µ

Pere Masjuan⇤ and Marc Vanderhaeghen
Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

(Dated: December 7, 2012)

Using the momentum dependence of the dressed quark mass and the well-known formulae for the
mass dependent quark loop contribution to the light-by-light scattering insertions, we compute the
hadronic light-by-light contribution to the the muon anomalous magnetic moment. We ascribe for
the first time a systematic error on the calculation.

PACS numbers: 13.40.Em,14.60.Ef

The anomalous magnetic moment of the muon is one
of the most accurately measured quantities in particle
physics. Any deviation from its prediction in the Stan-
dard Model of particle physics is a very promising signal
of new physics.

The present world average experimental value of its
deviation from the Dirac value, i.e., aµ = (gµ � 2)/2, is
given by aEXP

µ = 11659208.9(6.3) ⇥ 10�10 [1, 2]. This
impressive result is still limited by statistical errors, and
a proposal to measure the muon (g � 2)µ to a precision
of 1.6⇥ 10�10 has recently been submitted to FNAL [3].

At the level of the experimental accuracy, the QED
contributions to aµ from photons and leptons alone are
very well known. Recently the calculation has been com-
pleted up to the fifth order O(↵5

em) in the fine-structure
constant ↵em, giving the result 11658471.885(4)⇥ 10�10

[4].
The main uncertainties at present in the Standard

Model calculation for (g�2)µ originate from the hadronic
vacuum polarization (HVP) as well as hadronic light-
by-light scattering (HLBL) corrections. We show the
present estimates and their uncertainties for the QED,
HVP, HLBL, and the electroweak (EW) corrections in
Table I.

TABLE I. Standard Model contributions to (g � 2)µ.

Contribution Result in 10�10 units Ref.

QED(leptons) 11658471.885± 0.004 [4]

HVP(leading order) 692.3± 4.2 [5]

HVP(higher order) �9.84± 0.07 [6]

HLBL 11.6± 4.0 [7]

EW 15.4± 0.2 [8]

Total 11659181.3± 5.8

The existing discrepancy between the experimental
value for (g � 2)µ and its Standard Model prediction
stands at about 3�.

In order to interpret the upcoming new experiment at
FNAL, with an anticipated precision of 1.6⇥10�10, there

⇤
Corresponding author: masjuan@kph.uni-mainz.de

is an urgent need to improve on both the HVP as well as
the HLBL contributions. The accuracy of the HVP con-
tribution depends on the statistical error of the experi-
mental data for the e+e� annihilation cross-section into
hadrons. With future experiments, in particular at BES-
III [9], one foresees this error to quantitatively decrease.
The HLBL cannot be directly related to any measur-
able cross section however, and requires the knowledge
of Quantum Chromodynamics (QCD) contributions at
all energy scales. Since this is not known yet, one needs
to rely on hadronic models to compute it. Such models
introduce some systematic errors which are di�cult to
quantify.
The main motivation of this work is to provide a ball-

park prediction with a judicious error estimate for the
HLBL scattering based on a duality argument between
the hadronic degrees of freedom and the well-known
quark loop contribution.
Such a duality estimate can be obtained by invoking a

particular regime of QCD where one knows how to per-
form the quark loop integral responsible for the aHLBL

µ

(Fig. 1). This is the large-Nc of QCD [10, 11] where a
quark-hadron duality is accounted for considering that
hadronic amplitudes are described by an infinite set of
non-interacting and non-decaying resonances. As shown
in Ref. [12, 13], the large-Nc limit provides a very useful
framework to approach this problem.
Using the large-Nc counting and also the chiral count-

ing, it was proposed in [12] to split the diagram of Fig. 1
into a set of di↵erent contributions where the numerically
dominant contribution arises from the pseudo-scalar ex-
change diagram shown in Fig. 2 [7].
The large-Nc approach however has two shortcomings:

firstly, the assumption of pion-exchange dominance im-
plies that the remaining pieces are small enough to justify
their omission. Although this seems reasonable [13], it
might lead to an underestimation of the error. Secondly,
calculations carried out in the large-Nc limit demand an
infinite set of resonances for computing any quantity. As
such sum is not known in practice, one ends up truncating
the spectral function in a resonance saturation scheme,
the so-called Minimal Hadronic Approximation [14]. The
resonance masses used in each calculation are then taken
as the physical ones from PDG [15] instead of the cor-
responding masses in the large-Nc limit. Both problems
might lead to large systematic errors not included so far

Kinoshita et al 2012
Davier et al 2011

Hagiwara et al 2009

Jegerlehner and Nyffeler 2009

Czarnecki et al 2003

aexp
µ

� aSM

µ

= 27.6(8.0)⇥ 10�10 ) 3.4�

Anomalous magnetic moment aμ (anomaly):

athµ = aQED
µ + aweak

µ + ahadµgµ = 2

✓
1 + aµ =

↵

2⇡
+ · · ·

◆
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The anomalous magnetic moment of 
the muon

Anomalous magnetic moment aμ (anomaly):

New g-2 experiment at Fermilab with error 

gµ = 2

✓
1 + aµ =

↵

2⇡
+ · · ·

◆
athµ = aQED

µ + aweak
µ + ahadµ

aexp
µ

� aSM

µ

= 27.6(8.0)⇥ 10�10 ) 3.4�

1.6⇥ 10�10

Ballpark prediction for the hadronic light-by-light contribution to the muon (g � 2)µ

Pere Masjuan⇤ and Marc Vanderhaeghen
Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

(Dated: December 7, 2012)

Using the momentum dependence of the dressed quark mass and the well-known formulae for the
mass dependent quark loop contribution to the light-by-light scattering insertions, we compute the
hadronic light-by-light contribution to the the muon anomalous magnetic moment. We ascribe for
the first time a systematic error on the calculation.

PACS numbers: 13.40.Em,14.60.Ef

The anomalous magnetic moment of the muon is one
of the most accurately measured quantities in particle
physics. Any deviation from its prediction in the Stan-
dard Model of particle physics is a very promising signal
of new physics.

The present world average experimental value of its
deviation from the Dirac value, i.e., aµ = (gµ � 2)/2, is
given by aEXP

µ = 11659208.9(6.3) ⇥ 10�10 [1, 2]. This
impressive result is still limited by statistical errors, and
a proposal to measure the muon (g � 2)µ to a precision
of 1.6⇥ 10�10 has recently been submitted to FNAL [3].

At the level of the experimental accuracy, the QED
contributions to aµ from photons and leptons alone are
very well known. Recently the calculation has been com-
pleted up to the fifth order O(↵5

em) in the fine-structure
constant ↵em, giving the result 11658471.885(4)⇥ 10�10

[4].
The main uncertainties at present in the Standard

Model calculation for (g�2)µ originate from the hadronic
vacuum polarization (HVP) as well as hadronic light-
by-light scattering (HLBL) corrections. We show the
present estimates and their uncertainties for the QED,
HVP, HLBL, and the electroweak (EW) corrections in
Table I.

TABLE I. Standard Model contributions to (g � 2)µ.

Contribution Result in 10�10 units Ref.

QED(leptons) 11658471.885± 0.004 [4]

HVP(leading order) 692.3± 4.2 [5]

HVP(higher order) �9.84± 0.07 [6]

HLBL 11.6± 4.0 [7]

EW 15.4± 0.2 [8]

Total 11659181.3± 5.8

The existing discrepancy between the experimental
value for (g � 2)µ and its Standard Model prediction
stands at about 3�.

In order to interpret the upcoming new experiment at
FNAL, with an anticipated precision of 1.6⇥10�10, there

⇤
Corresponding author: masjuan@kph.uni-mainz.de

is an urgent need to improve on both the HVP as well as
the HLBL contributions. The accuracy of the HVP con-
tribution depends on the statistical error of the experi-
mental data for the e+e� annihilation cross-section into
hadrons. With future experiments, in particular at BES-
III [9], one foresees this error to quantitatively decrease.
The HLBL cannot be directly related to any measur-
able cross section however, and requires the knowledge
of Quantum Chromodynamics (QCD) contributions at
all energy scales. Since this is not known yet, one needs
to rely on hadronic models to compute it. Such models
introduce some systematic errors which are di�cult to
quantify.
The main motivation of this work is to provide a ball-

park prediction with a judicious error estimate for the
HLBL scattering based on a duality argument between
the hadronic degrees of freedom and the well-known
quark loop contribution.
Such a duality estimate can be obtained by invoking a

particular regime of QCD where one knows how to per-
form the quark loop integral responsible for the aHLBL

µ

(Fig. 1). This is the large-Nc of QCD [10, 11] where a
quark-hadron duality is accounted for considering that
hadronic amplitudes are described by an infinite set of
non-interacting and non-decaying resonances. As shown
in Ref. [12, 13], the large-Nc limit provides a very useful
framework to approach this problem.
Using the large-Nc counting and also the chiral count-

ing, it was proposed in [12] to split the diagram of Fig. 1
into a set of di↵erent contributions where the numerically
dominant contribution arises from the pseudo-scalar ex-
change diagram shown in Fig. 2 [7].
The large-Nc approach however has two shortcomings:

firstly, the assumption of pion-exchange dominance im-
plies that the remaining pieces are small enough to justify
their omission. Although this seems reasonable [13], it
might lead to an underestimation of the error. Secondly,
calculations carried out in the large-Nc limit demand an
infinite set of resonances for computing any quantity. As
such sum is not known in practice, one ends up truncating
the spectral function in a resonance saturation scheme,
the so-called Minimal Hadronic Approximation [14]. The
resonance masses used in each calculation are then taken
as the physical ones from PDG [15] instead of the cor-
responding masses in the large-Nc limit. Both problems
might lead to large systematic errors not included so far
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The anomalous magnetic moment of 
the muon

Ballpark prediction for the hadronic light-by-light contribution to the muon (g � 2)µ

Pere Masjuan⇤ and Marc Vanderhaeghen
Institut für Kernphysik, Johannes Gutenberg-Universität, D-55099 Mainz, Germany

(Dated: December 7, 2012)

Using the momentum dependence of the dressed quark mass and the well-known formulae for the
mass dependent quark loop contribution to the light-by-light scattering insertions, we compute the
hadronic light-by-light contribution to the the muon anomalous magnetic moment. We ascribe for
the first time a systematic error on the calculation.

PACS numbers: 13.40.Em,14.60.Ef

The anomalous magnetic moment of the muon is one
of the most accurately measured quantities in particle
physics. Any deviation from its prediction in the Stan-
dard Model of particle physics is a very promising signal
of new physics.

The present world average experimental value of its
deviation from the Dirac value, i.e., aµ = (gµ � 2)/2, is
given by aEXP

µ = 11659208.9(6.3) ⇥ 10�10 [1, 2]. This
impressive result is still limited by statistical errors, and
a proposal to measure the muon (g � 2)µ to a precision
of 1.6⇥ 10�10 has recently been submitted to FNAL [3].

At the level of the experimental accuracy, the QED
contributions to aµ from photons and leptons alone are
very well known. Recently the calculation has been com-
pleted up to the fifth order O(↵5

em) in the fine-structure
constant ↵em, giving the result 11658471.885(4)⇥ 10�10

[4].
The main uncertainties at present in the Standard

Model calculation for (g�2)µ originate from the hadronic
vacuum polarization (HVP) as well as hadronic light-
by-light scattering (HLBL) corrections. We show the
present estimates and their uncertainties for the QED,
HVP, HLBL, and the electroweak (EW) corrections in
Table I.

TABLE I. Standard Model contributions to (g � 2)µ.

Contribution Result in 10�10 units Ref.

QED(leptons) 11658471.885± 0.004 [4]

HVP(leading order) 692.3± 4.2 [5]

HVP(higher order) �9.84± 0.07 [6]

HLBL 11.6± 4.0 [7]

EW 15.4± 0.2 [8]

Total 11659181.3± 5.8

The existing discrepancy between the experimental
value for (g � 2)µ and its Standard Model prediction
stands at about 3�.

In order to interpret the upcoming new experiment at
FNAL, with an anticipated precision of 1.6⇥10�10, there

⇤
Corresponding author: masjuan@kph.uni-mainz.de

is an urgent need to improve on both the HVP as well as
the HLBL contributions. The accuracy of the HVP con-
tribution depends on the statistical error of the experi-
mental data for the e+e� annihilation cross-section into
hadrons. With future experiments, in particular at BES-
III [9], one foresees this error to quantitatively decrease.
The HLBL cannot be directly related to any measur-
able cross section however, and requires the knowledge
of Quantum Chromodynamics (QCD) contributions at
all energy scales. Since this is not known yet, one needs
to rely on hadronic models to compute it. Such models
introduce some systematic errors which are di�cult to
quantify.
The main motivation of this work is to provide a ball-

park prediction with a judicious error estimate for the
HLBL scattering based on a duality argument between
the hadronic degrees of freedom and the well-known
quark loop contribution.
Such a duality estimate can be obtained by invoking a

particular regime of QCD where one knows how to per-
form the quark loop integral responsible for the aHLBL

µ

(Fig. 1). This is the large-Nc of QCD [10, 11] where a
quark-hadron duality is accounted for considering that
hadronic amplitudes are described by an infinite set of
non-interacting and non-decaying resonances. As shown
in Ref. [12, 13], the large-Nc limit provides a very useful
framework to approach this problem.
Using the large-Nc counting and also the chiral count-

ing, it was proposed in [12] to split the diagram of Fig. 1
into a set of di↵erent contributions where the numerically
dominant contribution arises from the pseudo-scalar ex-
change diagram shown in Fig. 2 [7].
The large-Nc approach however has two shortcomings:

firstly, the assumption of pion-exchange dominance im-
plies that the remaining pieces are small enough to justify
their omission. Although this seems reasonable [13], it
might lead to an underestimation of the error. Secondly,
calculations carried out in the large-Nc limit demand an
infinite set of resonances for computing any quantity. As
such sum is not known in practice, one ends up truncating
the spectral function in a resonance saturation scheme,
the so-called Minimal Hadronic Approximation [14]. The
resonance masses used in each calculation are then taken
as the physical ones from PDG [15] instead of the cor-
responding masses in the large-Nc limit. Both problems
might lead to large systematic errors not included so far

aexp
µ

� aSM

µ

= 27.6(8.0)⇥ 10�10 ) 3.4�

Anomalous magnetic moment aμ (anomaly):
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Classification proposal by Eduardo de Rafael ’94

Chiral Perturbation Theory counting (p2)+large-Nc counting

Current approach to had. LbyL scattering
Classification of de Rafael ’94

Use chiral counting p2, derived from Chiral Perturbation Theory, and large-NC

counting as guideline to classify contributions (in general, all higher orders in p2 and
NC will contribute):

k

µ−(p)µ−(p’)

k = p’ − p

=
ρ

π
+

+

π , η, η0 ,

+

Exchange of
other reso-
nances
(f0, a1, . . .)

+
ρ

Q

Chiral counting: p4 p6 p8 p8

NC -counting: 1 NC NC NC

Relevant scales in hVVVV i (o↵-shell !): 0� 2 GeV, i.e. much larger than mµ ! No
direct relation to exp. data, in contrast to hadronic vacuum polarization in g � 2
! need hadronic (resonance) model (or lattice QCD)

Reduce model dependence by imposing experimental and theoretical constraints on
form factors and hVVVV i, e.g. from QCD short-distances (operator product expansion
(OPE)) to get better matching with perturbative QCD for high momenta

de Rafael ’94: last diagram can be interpreted as irreducible contribution to 4-point
function hVVVV i. Appears as short-distance complement of low-energy had. models

Pseudoscalars: numerically dominant contribution (according to most models !)

Exchange of lightest state ⇡0 yields largest contribution ! warrants special attention

Pesudoscalars: numerically dominant contribution (according to most models)
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Had. LbyL scattering: Summary of selected results
k

µ−(p)µ−(p’)

k = p’ − p

=
ρ

π
+

+

π , η, η0 ,

+

Exchange of
other reso-
nances
(f0, a1, . . .)

+
ρ

Q

Chiral counting: p4 p6 p8 p8

NC -counting: 1 NC NC NC

Contribution to aµ ⇥ 1011:

BPP: +83 (32)
HKS: +90 (15)
KN: +80 (40)
MV: +136 (25)
2007: +110 (40)
PdRV:+105 (26)
N,JN: +116 (40)
GFW: +217 (91)
GdR: +150 (3)

-19 (13)
-5 (8)

0 (10)

-19 (19)
-19 (13)

ud.: -45

+85 (13)
+83 (6)
+83 (12)

+114 (10)

+114 (13)
+99 (16)
+81 (12)
+68 (3)

ud.: +1

-4 (3) [f0, a1]
+1.7 (1.7) [a1]

+22 (5) [a1]

+8 (12) [f0, a1]
+15 (7) [f0, a1]

+21 (3)
+10 (11)

0

+2.3 [c-quark]
+21 (3)

+136 (59)
+82 (6)

ud.: +60

ud. = undressed, i.e. point vertices without form factors

BPP = Bijnens, Pallante, Prades ’96, ’02; HKS = Hayakawa, Kinoshita, Sanda ’96, ’98, ’02;
KN = Knecht, Ny↵eler ’02; MV = Melnikov, Vainshtein ’04; 2007 = Bijnens, Prades; Miller, de
Rafael, Roberts; PdRV = Prades, de Rafael, Vainshtein ’09; N,JN = Ny↵eler ’09; Jegerlehner,
Ny↵eler ’09; GFW = Goecke, Fischer, Williams ’11 (total includes estimate of “other
contributions” = 0 (20)); GdR = Greynat, de Rafael ’12 (given error only reflects variation
MQ = 240± 10 MeV, estimated 20%-30% systematic error)

Recall (in units of 10�11): �aµ(had. VP) ⇡ 45; �aµ(exp [BNL]) = 63; �aµ(future exp) = 15

[from A. Nyffeler 2012]
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In the large Nc and chiral limits:

for η and η’:

Pere Masjuan IRIDE meeting Frascati, 24th June 17

Dissection of the HLBL contribution

⌘ ! ⇠ 1.5 · 10�10

⌘0 ! ⇠ 1.5 · 10�10

⇡0 ! ⇠ 7 · 10�10

⇠ 1.6 · 10�10

Ballpark contributions from PS:

New g-2 experiment at Fermilab with error 



Dissection of the HLBL contribution

q1q1+q2

q2

q2 q1

q1

q1+q2
q2 q1

q1+q2

q1+q2

q2

Use data from
the Transition Form Factor

aLbL;P
µ = �e6

Z
d4q1
(2⇡)4

Z
d4q2
(2⇡)4

1

q21q
2
2(q1 + q2)2[(p+ q1)2 �m2][(p� q2)2 �m2]

⇥
 
FP⇤�⇤�⇤(q22 , q

2
1 , (q1 + q2)2)FP⇤�⇤�⇤(q22 , q

2
2 , 0)

q22 �M2
P

T1(q1, q2; p)

+
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Dissection of the HLBL contribution

Use data from
the Transition Form Factor

for numerical integrals
FP⇤�⇤�⇤(q23 , q
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2
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Use data from
the Transition Form Factor

to constrain your
hadronic model

single-tag method 



Dissection of the HLBL contribution

Use data from
the Transition Form Factor

for numerical integral
FP⇤�⇤�⇤(q23 , q

2
1 , q

2
2)

FP�⇤�⇤(m2
P , q

2
1 , q

2
2)

FP�⇤�(m
2
P , q

2
1 , 0)

22Pere Masjuan IRIDE meeting Frascati, 24th June

How??

Nice synergy between experiment and theory

Use data from
the Transition Form Factor

to constrain your
hadronic model



its calculation requires info. on the pseudoscalar form factors
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Our proposal
use Padé Approximants
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 η-η’ mixing in the flavor basis
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TABLE I. Low-energy constants for the ⌘- and ⌘

0-Transition Form Factor obtained from the PA fits to experimental data. The
first column indicates the kind of sequence used for the fit and N is the highest order reached with that sequence. The final
raw gives the weighted averaged result for each LEC. We also give the quality of the fits represented by the �

2
/dof (degree of

freedom).

⌘TFF ⌘

0
TFF

N a⌘ b⌘ �

2
/dof N a⌘0

b⌘0
�

2
/dof

P [N, 1] 5 0.569(60) 0.328(77) 0.92 5 1.29(10) 1.66(30) 0.81

P [N, 2] 1 0.545(24) 0.298(27) 0.85 0 1.24(3) 1.53(6) 0.84

P [N,N + 1] 1 0.545(24) 0.298(27) 0.85 0 1.23(2) 1.52(6) 0.83

P

0[N,N + 1] 1 0.582(76) 0.346(108) 0.91 1 1.25(3) 1.56(9) 0.83

PT [N, 1] 6 0.545(30) 0.300(40) 0.95 6 1.29(5) 1.66(16) 0.83

Final 0.547(18) 0.304(25) 1.24(1) 1.54(4)

For the ⌘-TFF we found limQ2!1 Q

2
F⌘��⇤(Q2) =

0.18+0.15
�0.03 GeV, agreeing with the phenomenologi-

cal/theoretical range (0.13�0.19) GeV. This window can
be further constrain, however, by imposing that the qual-
ity of the fit should be �

2
/dof < 1.3 after imposing the

asymptotic limit in our P 0N
N+1(Q

2). Doing this, the win-
dow reduces to (0.154� 0.19) GeV.

These two asymptotic-limit constrains together with
the experimental values for the decay widths �⌘!�� =
520(20)(13) eV [18], and �⌘0!�� = 4.34(14) keV [41],
allow us to fix the four parameters of the mixing, shown
in Table II. In all our numerical computations we use
f⇡ = 0.0924 GeV.

limQ2!1 Q

2
F⌘��⇤(Q2) ✓8 ✓0 f8 f0

0.190 GeV �33.8� �4.3� 1.84 0.86

0.170 GeV �36.3� �3.6� 1.72 0.86

0.154 GeV �35.6� �7.2� 1.29 0.79

TABLE II. ⌘�⌘

0 mixing parameters in the singlet-octet basis.
f0,8 ⌘ f0,8 · f⇡.

The ⌘�⌘

0 mixing can also be studied in the flavor base
instead of the singlet-octet one. In this base,
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where fq,s are the light-quark (strange) decay constants
for the corresponding light- and strange-quark content of
the ⌘ and ⌘

0. The asymptotic limits take then the form:
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Using Eq. (12) and the two equations for the decay
width in such base:
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(13)

we constrain the system and find the results shown in
Table III.

limQ2!1 Q

2
F⌘��⇤(Q2) �q �s fq fs

0.190 GeV 15.7� 36.9� 1.10 2.43

0.170 GeV 21.7� 37.9� 0.98 2.08

0.154 GeV 21.0� 34.7� 0.91 2.16

TABLE III. ⌘ � ⌘

0 mixing parameters in the flavor basis.
fq,s ⌘ fq,s · f⇡.

Under the assumption that the light-quark and ⇡

0 dis-
tribution amplitudes are similar to each other, the only
di↵erence between the corresponding TFF is a factor 3/5
that arises from the quark charges. A straightforward
application of the results shown in Table III is to con-
struct such light-quark form factor from ⌘- and ⌘

0-TFF.
In Fig. 3 this light-quark form factor for the set of val-
ues corresponding to the ⌘ asymptotic limit 0.170 GeV
(second row of Table III) and multiplied by 3Q2

/5 is com-
pared to the ⇡0-TFF one obtained in Ref. [6] (orange data
points as well as the corresponding fit with a P

02
3 (Q2) as

 η-η’ mixing

From the TFFs we can determine fq, fs,�
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TABLE I. Low-energy constants for the ⌘- and ⌘

0-Transition Form Factor obtained from the PA fits to experimental data. The
first column indicates the kind of sequence used for the fit and N is the highest order reached with that sequence. The final
raw gives the weighted averaged result for each LEC. We also give the quality of the fits represented by the �
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/dof (degree of

freedom).
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ity of the fit should be �
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/dof < 1.3 after imposing the

asymptotic limit in our P 0N
N+1(Q

2). Doing this, the win-
dow reduces to (0.154� 0.19) GeV.

These two asymptotic-limit constrains together with
the experimental values for the decay widths �⌘!�� =
520(20)(13) eV [18], and �⌘0!�� = 4.34(14) keV [41],
allow us to fix the four parameters of the mixing, shown
in Table II. In all our numerical computations we use
f⇡ = 0.0924 GeV.
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we constrain the system and find the results shown in
Table III.
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TABLE III. ⌘ � ⌘

0 mixing parameters in the flavor basis.
fq,s ⌘ fq,s · f⇡.

Under the assumption that the light-quark and ⇡

0 dis-
tribution amplitudes are similar to each other, the only
di↵erence between the corresponding TFF is a factor 3/5
that arises from the quark charges. A straightforward
application of the results shown in Table III is to con-
struct such light-quark form factor from ⌘- and ⌘

0-TFF.
In Fig. 3 this light-quark form factor for the set of val-
ues corresponding to the ⌘ asymptotic limit 0.170 GeV
(second row of Table III) and multiplied by 3Q2

/5 is com-
pared to the ⇡0-TFF one obtained in Ref. [6] (orange data
points as well as the corresponding fit with a P

02
3 (Q2) as

 η-η’ mixing

From the TFFs we can determine fq, fs,�
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fs

◆2
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9↵2

32⇡3
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Cq sin[�]
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+

Cs cos[�]
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✓
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⌘
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◆
=
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fq sin[�] fs cos[�]

◆

5

TABLE I. Low-energy constants for the ⌘- and ⌘

0-Transition Form Factor obtained from the PA fits to experimental data. The
first column indicates the kind of sequence used for the fit and N is the highest order reached with that sequence. The final
raw gives the weighted averaged result for each LEC. We also give the quality of the fits represented by the �

2
/dof (degree of

freedom).

⌘TFF ⌘

0
TFF

N a⌘ b⌘ �

2
/dof N a⌘0

b⌘0
�

2
/dof

P [N, 1] 5 0.569(60) 0.328(77) 0.92 5 1.29(10) 1.66(30) 0.81

P [N, 2] 1 0.545(24) 0.298(27) 0.85 0 1.24(3) 1.53(6) 0.84

P [N,N + 1] 1 0.545(24) 0.298(27) 0.85 0 1.23(2) 1.52(6) 0.83

P

0[N,N + 1] 1 0.582(76) 0.346(108) 0.91 1 1.25(3) 1.56(9) 0.83

PT [N, 1] 6 0.545(30) 0.300(40) 0.95 6 1.29(5) 1.66(16) 0.83

Final 0.547(18) 0.304(25) 1.24(1) 1.54(4)

For the ⌘-TFF we found limQ2!1 Q

2
F⌘��⇤(Q2) =

0.18+0.15
�0.03 GeV, agreeing with the phenomenologi-

cal/theoretical range (0.13�0.19) GeV. This window can
be further constrain, however, by imposing that the qual-
ity of the fit should be �

2
/dof < 1.3 after imposing the

asymptotic limit in our P 0N
N+1(Q

2). Doing this, the win-
dow reduces to (0.154� 0.19) GeV.

These two asymptotic-limit constrains together with
the experimental values for the decay widths �⌘!�� =
520(20)(13) eV [18], and �⌘0!�� = 4.34(14) keV [41],
allow us to fix the four parameters of the mixing, shown
in Table II. In all our numerical computations we use
f⇡ = 0.0924 GeV.

limQ2!1 Q

2
F⌘��⇤(Q2) ✓8 ✓0 f8 f0

0.190 GeV �33.8� �4.3� 1.84 0.86

0.170 GeV �36.3� �3.6� 1.72 0.86

0.154 GeV �35.6� �7.2� 1.29 0.79

TABLE II. ⌘�⌘

0 mixing parameters in the singlet-octet basis.
f0,8 ⌘ f0,8 · f⇡.

The ⌘�⌘

0 mixing can also be studied in the flavor base
instead of the singlet-octet one. In this base,

 
⌘

⌘

0

!
=

 
cos�q sin�s

sin�s cos�s

! 
⌘q

⌘s

!
, (9)

and

⌘q =
uu+ ddp

2
⌘s = ss . (10)

Using this notation, the decay constants are:

 
f

q
⌘ f

s
⌘

f

q
⌘0 f

s
⌘0

!
=

 
fq cos�q �fs sin�s

fq sin�s f0 cos�s

!
, (11)

where fq,s are the light-quark (strange) decay constants
for the corresponding light- and strange-quark content of
the ⌘ and ⌘

0. The asymptotic limits take then the form:

lim
Q2!1

Q

2
F⌘��⇤(Q2) = f

q
⌘

10

3
+ f

s
⌘

2
p
2

3
,

lim
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Q

2
F⌘0��⇤(Q2) = f

q
⌘0
10

3
+ f

s
⌘0
2
p
2

3
.

(12)

Using Eq. (12) and the two equations for the decay
width in such base:
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(13)

we constrain the system and find the results shown in
Table III.

limQ2!1 Q

2
F⌘��⇤(Q2) �q �s fq fs

0.190 GeV 15.7� 36.9� 1.10 2.43

0.170 GeV 21.7� 37.9� 0.98 2.08

0.154 GeV 21.0� 34.7� 0.91 2.16

TABLE III. ⌘ � ⌘

0 mixing parameters in the flavor basis.
fq,s ⌘ fq,s · f⇡.

Under the assumption that the light-quark and ⇡

0 dis-
tribution amplitudes are similar to each other, the only
di↵erence between the corresponding TFF is a factor 3/5
that arises from the quark charges. A straightforward
application of the results shown in Table III is to con-
struct such light-quark form factor from ⌘- and ⌘

0-TFF.
In Fig. 3 this light-quark form factor for the set of val-
ues corresponding to the ⌘ asymptotic limit 0.170 GeV
(second row of Table III) and multiplied by 3Q2

/5 is com-
pared to the ⇡0-TFF one obtained in Ref. [6] (orange data
points as well as the corresponding fit with a P

02
3 (Q2) as

 η-η’ mixing

From the TFFs we can determine fq, fs,�

fq = 1.065(13)f⇡, fs = 1.53(22)f⇡, � = 40.2(1.5)�

Update of Frere-Escribano ’05 with PDG12 using 9 inputs

fq = 1.07(1)f⇡, fs = 1.63(2)f⇡, � = 40.4(0.3)�
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• A precise measurement of              is crucial for:�⌘(0)!��

• A precise extraction of eta-eta’ mixing
• A precise constraint for the gluonic content on eta(‘)

•Together with theory (nice synergy):
• Accurate extraction of slope and curvature of FF

• The same applies to              (see S. Ivashyn) 

•And to 

�⇡0!��

⌘(1405) ! ��, ⌘(1475) ! ��

⇡(1300) ! ��, ⌘(1295) ! ��
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• A precise measurement of              is crucial for:�⌘(0)!��

• A precise extraction of eta-eta’ mixing
• A precise constraint for the gluonic content on eta(‘)

•Together with theory (nice synergy):
• Accurate extraction of slope and curvature of FF

• The same applies to              (see S. Ivashyn) �⇡0!��

•And to 
⇡(1300) ! ��, ⌘(1295) ! ��

⌘(1405) ! ��, ⌘(1475) ! ��



Thank you!
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