

Workshop on "Particle Physics Opportunities at IRIDE"

24-25 June 2013 INFN - LNF Europe/Rome timezone

yy particle production at IRIDE

Federico Nguyen - LIP Lisbon

June, 25th 2013

An outline (from experience at low energy)

Scalar mesons

 $e^+e^-
ightarrow e^+e^-\gamma^*\gamma^*
ightarrow e^+e^-{
m X}$

> QED tests

➤ an outlook

$$e^-e^- \rightarrow e^-e^- \gamma^* \gamma^* \rightarrow e^-e^- X$$

2

Gamma-gamma flux @ Iride

PseudoScalar mesons: yy widths

$$\mathbf{N}_{e^+e^- \to e^+e^- X} = L_{ee} \int \frac{\mathrm{dF}}{\mathrm{dW}_{\gamma\gamma}} \sigma_{\gamma\gamma \to X}(\mathbf{W}_{\gamma\gamma}) \mathrm{dW}_{\gamma\gamma}$$

for narrow pseudoscalar [see C. Di Donato] mesons (e.g. π^0 , η , η' , $\eta_c(1S)$,...):

$$\sigma_{\gamma\gamma \to X}(q_1, q_2) \propto \Gamma_{X \to \gamma\gamma} \frac{8\pi^2}{M_X} \delta((q_1 + q_2)^2 - M_X^2) \left[F(q_1^2, q_2^2)\right]^2$$

absolute measurement: either your decay channel is $X \rightarrow \gamma\gamma$ or must know BR(X \rightarrow f)... often the limiting factor

spectrum measurement, as a function of a single momentum transfer, fixing or integrating over the other one, 2-dim PDF not yet measured

The $\Gamma_{\eta\gamma\gamma}$ KLOE measurement

The $\Gamma_{\eta\gamma\gamma}$ KLOE measurement

from 240 pb⁻¹ of data taken at DA Φ NE, combining the two measurements:

$$\sigma(e^+e^- \to e^+e^-\eta) = (32.7 \pm 1.3 \pm 0.7) \text{ pb}$$

$$\sigma_{\gamma\gamma
ightarrow\eta}=rac{8\pi^2}{m_\eta}\Gamma(\eta
ightarrow\gamma\gamma)\delta(w^2-m_\eta^2)|F(q_1^2,q_2^2)|^2$$

and assuming:

 $F(q_1^2,q_2^2) = rac{1}{1-bq_1^2}rac{1}{1-bq_2^2} \quad {
m with} \ \ b = 1.94 \ {
m GeV}^{-2}$

$$\Rightarrow \Gamma(\eta
ightarrow \gamma \gamma) = (520 \pm 20 \pm 13) \; \mathrm{eV}$$

most precise measurement to date

[JHEP01(2013)119]

PDG average: $\Gamma(\eta
ightarrow \gamma \gamma) = (510 \pm 26) \ \mathrm{eV}$

The $\Gamma_{\eta\gamma\gamma}$ KLOE measurement

from 240 pb⁻¹ of data taken at DA Φ NE, combining the two measurements:

most precise measurement to date

[JHEP01(2013)119]

PDG average: $\Gamma(\eta
ightarrow \gamma \gamma) = (510 \pm 26) \ \mathrm{eV}$

PS meson production: Iride vs. flavour factories

$$\sigma_{e^+e^- \to e^+e^- X} = \frac{16\alpha^2 \Gamma_{X\gamma\gamma}}{m_X^3} \left(\ln \frac{E_b}{m_e} \right)^2 \left((y^2 + 2)^2 \, \ln \frac{1}{y} - (1 - y^2) \, (3 + y^2) \right) \quad y = m_X / (2E_b)$$

$\sigma_{e^+e^- \to e^+e^- PS}$ [pb]			
\sqrt{s}	ϕ	J/ψ	$4 { m GeV}$
π^0	261	638	752
η	45	279	362
η'	8	245	351
$\eta_c(1S)$		0.2	2.1

Iride vs. BESIII: same yield, but in the e⁻e⁻ collider configuration

no annihilation background

flipping of the η - η' cross sections, because phase space gets marginal wrt the partial width: $\Gamma_{\eta'\gamma\gamma} \sim 10 \Gamma_{\eta\gamma\gamma}$

25-06-2013

The $\eta'(958)$ width @ Iride: a tentative strategy

- ✓ final states with charged tracks are preferable
- ✓ each F channel provides σ ∝ Γ(η' → F) × Γ(η' → γγ)
- ✓ measure directly $\sigma(e^-e^- \rightarrow e^-e^-\eta' \rightarrow e^-e^-\gamma\gamma) \propto [\Gamma(\eta' \rightarrow \gamma\gamma)]^2$
- \checkmark also measure η' cross sections in dominant final states, close them

to a combined fit \rightarrow extract precise $\Gamma(\eta' \rightarrow \gamma \gamma)$

Iride: 1 fb⁻¹ @ 4 GeV

final state F	$BR(\eta' \to F) \ (\%)$	preferable chain	BR_{eff} (%)	events
$\pi^+\pi^-\eta$	44.6 ± 1.4	$\pi^+\pi^-\eta(\to 2\gamma) \leftrightarrow \pi^+\pi^-2\gamma$	17.5	60 000
$\pi^+\pi^-\gamma$	29.4 ± 0.9			100 000
$\pi^0 \pi^0 \eta$	20.7 ± 1.2	$\pi^0 \pi^0 \eta (\to \pi^+ \pi^- \pi^0) \leftrightarrow \pi^+ \pi^- 6 \gamma$	4.7	16 000
$\omega\gamma$	3.02 ± 0.31	$\omega(\to\pi^+\pi^-\pi^0)\gamma \leftrightarrow \pi^+\pi^-3\gamma$	2.7	9 500
$\gamma\gamma$	2.10 ± 0.12			7 300

PS transition form factors: L-by-L

Contribution	N/JN
π^0,η,η^\prime	$99{\pm}16$
π, K loops	-19 ± 13
π, K loops + other subleading in N_c	-
axial vectors	22 ± 5
scalars	-7 ± 2
quark loops	21 ± 3
total	116 ± 39
$a_{\mu}^{\text{LbL};\text{had}}$	$\times 10^{11}$

- $\mathcal{F}_{\pi^{0*}\gamma^*\gamma^*}((q_1+q_2)^2, q_1^2, q_2^2)$
- possibility to constrain contributions from data
- pseudoscalar pole contribution dominates, many

theory approaches \rightarrow a clean case with only 2 independent scales, F(m_{PS}²,q₁²,q₂²)

Iride: low Q² region unexplored

Low mass scalar mesons: puzzling since the 70's

Maiani et al. :: A new look at scalar mesons as *4q* structures - PRL93(2004)212002 `t Hooft et al. :: A theory of scalar mesons - PLB662(2008)424

Recent measurements of $\gamma\gamma \rightarrow \pi\pi$

Searching for $\gamma\gamma \rightarrow \sigma(600) \rightarrow 2\pi^0$

- $\pi^+\pi^-$ harder than $\pi^0\pi^0$ channel:
 - μ+μ- background (need robust particle ID)
 - 2) sizeable continuum $\gamma\gamma \to \pi^+\pi^-$ at tree level in QED

$\Gamma(\gamma\gamma)$ keV			
composition	predictions	author(s)	
$(\overline{u}u + \overline{d}d)/\sqrt{2}$	4.0	Babcock & Rosner ⁷³	
22	0.2	Barnes ⁷⁴	
$\overline{[ns]}[ns], n = (u, d)$	0.27	Achasov et al. 75	
$\overline{K}K$	0.6 0.22	Barnes 76 Hanhart <i>et al</i> . 77	

 $\sigma(\gamma\gamma \to \sigma(600)) \propto \Gamma(\sigma(600) \to \gamma\gamma)$

s with 2 loop	BES values χPT σ(nb)	ChPT
14	·····/	
12	T. T	
10	THEFT	
8 / +		
6 /	-	
4	/.	· · ·
2		1
0	· · · · · · · · · · · · · · · · · · ·	<u> </u>
300	400 500 60 W _{γγ} (MeV)	700 800
lesonant o	ontributio	$n \gamma \gamma ightarrow \sigma ightarrow \pi^0 \eta$
Fur Phy	S. J. C 47 65	-70 (2006)
Eur. Thy	5. 5. 0 4/, 03	
r.Nguye	en, F.Piccinin	i & A.Polosa

from the radiative width \rightarrow infer the structure

The $\gamma\gamma \rightarrow \pi^0\pi^0$ KLOE measurement

The $\gamma\gamma \rightarrow \pi^0\pi^0$ KLOE measurement

More scalar mesons produced in $\gamma\gamma$ collisions

More scalar mesons produced in yy collisions

QED tests with $e^+e^- \rightarrow e^+e^- |+|^- (|=e,\mu)$

a way to find the "unexpected" (*e.g.* the h' of the Dark Hidden Sector), while performing top class QED tests?

light (pseudo)scalar boson

 \checkmark precise QED cross section tests

✓ tagger for testing differential distributions (triple products)

 \checkmark C,P,CP-violating asymmetries would hint to new phenomena

- HyperCP excess, for events Σ⁺ → pµ⁺µ⁻ <u>http://arxiv.org/abs/hep-ex/0501014</u>
- interpretation as sgoldstino S and possible search in events

 $e^+e^- \rightarrow Se^+e^- \rightarrow \mu^+\mu^-e^+e^-$,

 $e^+e^- \rightarrow Se^+e^- \rightarrow \gamma\gamma e^+e^-$

http://arxiv.org/abs/hep-ph/0509147

 \checkmark unique $\gamma\gamma$ opportunities @ Iride, especially if also the e^-e^- collider program is carried on

 \checkmark legacy results on the properties of light scalar and pseudoscalar mesons through $\gamma\gamma$ production

✓ unprecedented QED tests at the GeV scale: if new particles (the U-boson with its sector) were located at that scale or below \rightarrow hard escaping the scrutiny of spectra predicted with great accuracy in QED

SPARES

PS mixing angle and the gluonium in η'

PS form factors: from models to the $(g-2)_{\mu}$ saga

e.g.

important to test phenomenological models, more or less QCD/ChPT inspired..., but impacts also the $(g-2)_{\mu}$

$$F(k_1^2, k_2^2) = \frac{m_{\rho}^2}{(m_{\rho}^2 - k_1^2 - k_2^2)}$$

 $F(k_1^2,k_2^2) = \frac{m_\rho^4 - \frac{4\pi^2~F_\pi^2}{N_c}~(k_1^2 + k_2^2)}{(m_\rho^2 - k_1^2)(m_\rho^2 - k_2^2)}$

from F.Jegerlehner & A.Nyffeler, Phys. Rept, 477(2009)1

Standard model theory and experiment comparison [in units 10⁻¹¹].

Contribution	Value	Error	
QED incl. 4-loops + LO 5-loops	116584718.1	0.2	
Leading hadronic vacuum polarization	6 903.0	52.6	
Subleading hadronic vacuum polarization	-100.3	1.1	
Hadronic light-by-light	116.0	39.0	
Weak incl. 2-loops	153.2	1.8	
Theory	116591790.0	64.6	
Experiment	116592080.0	63.0	
Exp The. 3.2 standard deviations	290.0	90.3	

Measuring η and η' did not clarify

good agreement with CLEO in the overlapping regions

Federico Nguyen 25-06-2013

25

An example: π^0 transition form factor

well known asymptotic limits from 1^{st} principles, how to interpolate? what about η , η' ?

$$\lim_{Q^2 \to \infty} \mathcal{F}_{\pi^0 \gamma^* \gamma}(m_\pi^2, -Q^2, 0) \sim \frac{2F_\pi}{Q^2}$$

$$\lim_{Q^2 \to 0} \mathcal{F}_{\pi^0 \gamma^* \gamma}(m_\pi^2, -Q^2, 0) = \frac{1}{4\pi^2 F_\pi}$$

An example: π^0 transition form factor

