
Performance and scalability
comparison of disk IO protocols

for LHC

G. Donvito
INFN-BARI

G. Donvito -- CCR Workshop -- 8 May 2007

Outlook
• Tests set-up:

 XRootD
 dCache
 CASTOR (already presented by Luca Dell’Agnello)
 GPFS (already presented by Luca Dell’Agnello)

• Client software:
 Description
 Optimization

• Test results (CASTOR, dCache, GPFS, XRootD)
• Conclusions

G. Donvito -- CCR Workshop -- 8 May 2007

dCache overview
• It is developed in a large collaboration between Desy and FNAL (plus some other

minor contributions)
• GOALS:

 To make a distributed storage system to gain high performance and high-availability
 To provide an abstraction of whole disk space under a unique NFS like file-system (just

for metadata operations)
 To possibly add the support for its own MSS system

• They are needed only 2 or 3 scripts (put/get/remove)
• File access:

 provides local and remote access (posix like) with many protocols (dcap, ftp, xrootd) both
with and without authentication (gsi or kerberos)

• Access management: access priority and load balancing obtained trough the use of
different queue

• Allows multiple copy of files spread over different pools to improve performance
and HA
 pool-2-pool automatic (or manually) transfers

• Allows dynamic “match-making” between pools
 According to the parameters chosen by the administrator (they can be based on disk space,

load, network, type of access etc.)

G. Donvito -- CCR Workshop -- 8 May 2007

dCache overview (2)
• It is possible to move all the files in a pool to put it in a “scheduled

downtime”
 Or just to choose which file you want to move and where.

• Also the “central services” can be split on different nodes to improve the
scalability

• Pool management:
 gives the possibility to create groups of pools named “storage class” (read,

write, cache, or per VO and user bases or use bases)
 Can be useful for quota management

• Web monitoring, statistical module (also with rate-plot)
• JAVA GUI for administration
• Both SRM v1 and v2 (in pre-production) is available
• Accounting system flat-files or DB based (not user friendly but there are

many information) and space used per VO
• It is possible to use WN (or other “not reliable” space) disks to improve

performance for local access

G. Donvito -- CCR Workshop -- 8 May 2007

dCache overview (3)

G. Donvito -- CCR Workshop -- 8 May 2007

dCache overview (4)

G. Donvito -- CCR Workshop -- 8 May 2007

dCache
Test Installation Schema

dCache CORE PNFS Server

Admin node PNFS Server

Pool node

dCap door

Pool node

dCap door

Pool node

dCap door

Pool node

dCap door

Pool node

dCap door

• The admin door is split in two machine: PNFS(Database) and dCache Admin-dcap
door

• The PNFS-server is on flat-files database (the lack in performance is not
important since the number of files is small)

• On each machine we have a pool running with 2-3 partitions used

• Small tuning done in order to fit with the large requirements:

• Number of allocable slots

• Time-out in opening file

G. Donvito -- CCR Workshop -- 8 May 2007

XRootD Overview
• Developed in a collaboration between SLAC, INFN, CERN,

BNL and many other contributors
• Purpose:

 to construct high performance data access systems by means of P2P-like
clustering

 develop a synergy between high performance, low latency servers,
virtually unlimited clustering capabilities (up to 262K server nodes)

 to build systems able to seamlessly ignore a server's failure, even through
WANs

 no central points of failure, no bottlenecks (e.g. file catalogs) except for
the single disks performance

 no 3rd party SW needed, no messy dependencies
 to do it privileging simplicity, i.e. low admin cost

G. Donvito -- CCR Workshop -- 8 May 2007

XRootD Overview (2)

lfn2pfn
prefix encoding

Storage System
(oss, drm/srm, etc)

authentication
(gsi, krb5, etc)

Clustering
(olbd)

authorizatio
n

(name based)

File System
(ofs, sfs, alice, etc)

Protocol (1 of n)
(xrootd)

Protocol Driver
(XRD)

G. Donvito -- CCR Workshop -- 8 May 2007

XRootD Overview (3)
• File access: the storage granularity is at file level
• Plugin-based architecture, entirely POSIX and C++ based, many platforms

available, very low dependencies on specific kernels, versions
• SRM compliance through external sw integrations (e.g. Castor), native SRM

integration is on the way (STORM)
• Can aggregate different local namespaces into a global unique one
• Load balancing, resource allocation, access and fault tolerance achieved through

 P2P-like mechanisms at the server side
 An intelligent fault-detecting client which crawls the server clusters
 In principle the app does not notice server failures

• Supports any number of file replicas to higher data availability and read
performance

• Many interfaces (native, POSIX, ...) available through different sw layers
• Various MSS integrations (HPSS, CASTOR, ...)
• WAN-friendly, not limited to file copying

 multiple clusters can cooperate through WAN
 the client can be used to exploit high bandwidth WANs from the applications

by hiding the data access latency

G. Donvito -- CCR Workshop -- 8 May 2007

XRootD Overview (4)

G. Donvito -- CCR Workshop -- 8 May 2007

XRootD:
Test Installation Schema

Manager

Data server

2 or 3 xFS mounts

Data server

2 or 3 xFS mounts

Data server

2 or 3 xFS mounts

Data server

2 or 3 xFS mounts
23 servers23 servers

• A total of 24 servers
• 1 Manager + 23 data servers
• No data redundancy, No server redundancy
• Plain default configuration
• 2 or 3 mounts per data server, everything mapped to /store namespace
• Files have been distributed in a round-robin fashion by just writing them to /store
• No server local storage
• Many external mountpoints, pointing to a few disk controllers in the SAN

G. Donvito -- CCR Workshop -- 8 May 2007

Client software
• The goal is to simulate a typical analysis job
• The schema for all the client is always the same:

 There were 4 different implementation: CASTOR, dCache, GPFS,
XRootD

• The operation executed by the client is logically simple:
 It reads the required number of bytes at a given offset for each specified

file
 The list of “read operations” (offset and number of bytes) is given with

an input file (named “tracefiles”)
 The list of files to be read is given with an input file:

• 5 different files are opened by each job
 The “tracefile” is chosen random between 10 different files:

• 5 are taken from real BaBar jobs
• 5 are composed by a random list of offset and number of bytes in order to

simulate the worst possible case
• Each “tracefile” contains 5000 “read operation”

 It is enough a single read-failure makes jobs fail

G. Donvito -- CCR Workshop -- 8 May 2007

Client software (2)
• Highlight on the tests:

 All the jobs are synchronized in order to maximize the impact on the Storage
Manager

• This is a limit situation in order to simulate a higher number of concurrent jobs
 All the files (5 file for each jobs) are opened before starting reading

• Also 5 files per job are used in order to simulate a higher number of concurrent jobs
 The access pattern is random in order to increase the stress on the storage

system (both hardware and software)
 It is possible to set a “think-time” in order to simulate the CPU time of a typical

analysis-job (the CPU is really loaded)
 Each file is red from several WN
 Sorted “tracefiles” are used to reduce the load on the disk sub-system
 A sequential access pattern is used in order to measure pick rate in case of

concurrent file access
 The client reports a lot of information useful for statistics:

• open_elapsed, data_xfer_elapsed, close_elapsed, total_elapsed,
totalbytesreadperfile, maxbytesreadpersecperfile, effbytesreadpersecperfile,
throughputperfile, readscountperfile, openedokfilescount

G. Donvito -- CCR Workshop -- 8 May 2007

Client side optimization

• dCache optimization:
 Using ENV-Variables:

• Reducing READHAED (export DCACHE_RA_BUFFER=1000)
– Avoid overloading the system with data not used by the application

• GPFS optimization:
 Using simple C “read” function

• Avoid overloading the system with read action not needed (triggered
automatically from C++ library)

• XRootD optimization:
 Readahead switched OFF, using vectored asynchronous reads of 512

subchunks.
 Set very high data xfer timeout (1200 secs) to efficiently deal with

overloaded disk systems.

G. Donvito -- CCR Workshop -- 8 May 2007

Results: Network views
dCache

Xrootd

GPFS
Starting from left: 1100 think-time 20ms (dcache, xrootd); GPFS 1100 sorted; xrootd 550 0 e 20 ms; dcache 550 0 e 20 ms;
275 0 ms (dCache, xrootd), 275 20 ms (dCache, xrootd), 137 0 ms (dCache, xrootd)

GPFS

Starting from left in the box: 137 0 ms; 137 20 ms, 275 20 ms, 275 0 ms, 550 0,
550 20, 1100 0ms, 1100 20ms

G. Donvito -- CCR Workshop -- 8 May 2007

“APPLICATION” VIEWS

G. Donvito -- CCR Workshop -- 8 May 2007

Results: JOBtime vs size vs failures ­ 0ms

G. Donvito -- CCR Workshop -- 8 May 2007

Results: RUNtime vs size vs failures ­ 0ms

G. Donvito -- CCR Workshop -- 8 May 2007

Results: JOBtime vs size vs failures ­ 20ms

G. Donvito -- CCR Workshop -- 8 May 2007

Results: RUNtime vs size vs failures ­ 20ms

G. Donvito -- CCR Workshop -- 8 May 2007

Computation impact on JOBtime

G. Donvito -- CCR Workshop -- 8 May 2007

Computation impact on RUNtime

G. Donvito -- CCR Workshop -- 8 May 2007

Performance degradation?

G. Donvito -- CCR Workshop -- 8 May 2007

Performance degradation?

G. Donvito -- CCR Workshop -- 8 May 2007

Access to the data

G. Donvito -- CCR Workshop -- 8 May 2007

Access to the data

G. Donvito -- CCR Workshop -- 8 May 2007

Pure sequential pattern, 2GB per job

G. Donvito -- CCR Workshop -- 8 May 2007

Pure sequential pattern, 2GB per job

G. Donvito -- CCR Workshop -- 8 May 2007

Access pattern impact

G. Donvito -- CCR Workshop -- 8 May 2007

Access pattern impact

G. Donvito -- CCR Workshop -- 8 May 2007

Final thoughts

• These test are focused only on a specific (and very
important) feature
 Each of these complex software has many other aspect to

be evaluated
 The condition in which we tested the system is high

loading
• 5430 Files opened (concurrently)
• 2 GB/sec of network bandwidth
• 1.6 GB/sec of disc bandwidth

 We surely reach the limit of the underline disk sub-system

G. Donvito -- CCR Workshop -- 8 May 2007

Proposed Conclusions
• GPFS:

 Excellent performance in all tests
 Low failure rate in all tests
 SRM available from INFN (StoRM: not usable in production at this moment

because only SRMv2.2 is available)
 Reduced performance when WN load is high (should be solved increasing the

priority of GPFS daemon on WN)
 Failure rate constant also with few concurrent jobs

• XRootD:
 Good performance
 Low failure rate in all tests
 Installation and management quite easy
 INFN is involved in developing
 Failure rate constant also with few concurrent jobs (the problem should be

fixed in next client release)
 Better performance if client is well tuned
 SRM and gridftp not available yet.

G. Donvito -- CCR Workshop -- 8 May 2007

Proposed Conclusions
• dCache:

 Good stability with few concurrent jobs (0 failure)
 Complete and widely distributed solution for LHC T1/2 (with SRMv1/2, gsiftp,

xrootd, tape management, etc)
 The system is highly configurable to fit with the site needes
 Large Failure rate when the load is too high (It is needed a large number of

dcap doors to scale at this level of parallelism)
 The default set-up is not always a good choice (can be changed at site-level)
 Open time greater than the other system (intrinsic limit: “chimera” should solve

this in next release)
• CASTOR:

 The release in production is not able to pass this test: the next release will
solve this problems

G. Donvito -- CCR Workshop -- 8 May 2007

Credits

• Network setup: M. Bencivenni, D. Degirolamo, R. Veraldi, S.
Zani

• Farm setup: A. Italiano, D. Salomoni
• Monitoring setup: F. Rosso, D. Vitlacil
• Storage hw setup: A. D’apice, PP. Ricci, V. Sapunenko
• Storage systems setup: G. Donvito, A. Fella, F. Furano, G.

Lore, V. Sapunenko ,D. Vitlacil
• Storage systems tests: A. Carbone, L. dell’Agnello, G.

Donvito, A. Fella, F. Furano, G. Lore, V. Sapunenko, V.
Vagnoni

• Storm development team: A. Forti, L. Magnoni, R. Zappi
• Storm tests: E. Lanciotti, R. Santinelli, V. Sapunenko

G. Donvito -- CCR Workshop -- 8 May 2007

Back-up Slides

G. Donvito -- CCR Workshop -- 8 May 2007

Partendo da sinistra: lettura sequenziale xrootd (test di Angelo); 1100 0ms (dCache e xrootd); sequenziali (dCache e
xrootd); ordinati (dCache e xrootd)

Con il bollino giallo: GPFS 1100 sequenziali

GPFS, nei sequenziali va peggio degli
altri per un effetto dovuto alla cache del
Sistema operativo che gli altri due sistemi
possono usare a differenza di GPFS.

(quindi il risultato va preso un po’ con le
molle)

G. Donvito -- CCR Workshop -- 8 May 2007

