

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Virtual Square:
all the virtuality you always wanted

but you were afraid to ask.

Renzo Davoli
Computer Science Department

ALMA MATER STUDIORUM: University of Bologna

WorkShop 2007 sul Calcolo e Reti dell'INFN

Rimini, 10 maggio 2007

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Virtual Square

VIRTUAL

VIRTUAL
VIRTUAL SQUARED

VIRTUAL

VIRTUAL

VIRTUAL VIRTUAL

VIRTUAL

VIRTUAL

VIRTUAL SQUARE

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

VIRTUALITY today

● Virtual Machines
– historical topic
– lots of papers
– lots of tools
– ... but something is already missing

● Virtual Networking
– less historical
– several papers

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Virtual Square

Virtualization concepts and tools are
disconnected.

There is a world of new applications that
can be realized by interoperating,

integrated virtuality

UNIFICATION IS NEEDED

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Virtual Square

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Some Examples of VM
(free software)

● Qemu: PVM or SVM, User Mode User
Access (or dual-mode with KQEMU,
proprietary sw).
– cross emulation platform (ia32, ia64, ppc,

m68k, sparc, arm...)
– dynamic translation

● XEN: SVM, Native.
– xen uses para-virtualization (O.S. in domain0

has the real device drivers).
– (xen ideas come from the Denali project:

SVN, Native, real virtualization).

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Some Examples of VM
(free software)

● User-Mode Linux (U-ML): SCVM, User-Mode
User Access.
– Same ABI/Same ISA: Linux on Linux.
– Uses the debugging interface ptrace to capture

the system calls.

● OpenVZ: Native, SVM (but all the Vms share
the same kernel, this category is also known
as: Operating System Level Virtualization).
– derived from the proprietary product Virtuozzo.
– the kernel itself provide different resource and

different permissions to virtual instances of Linux.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Some Other Examples

● Mac-On-Linux: (free SW, SVM, Dual)
● Vmware: (proprietary, SCVM, Dual)
● VirtualPC/Virtual Server: (proprietary,

SVM, Dual)
● PearPC: (free, SVM, User-Mode User-

Access)
● Solaris “zones”: proprietary, Native, SVN

(OSLV).

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

There are other kinds of
Virtuality!

The “classical” definition of Virtual Machines
does not catch all the possible “Virtualities”...

● Virtual Network Interfaces:
– tuntap

● Virtual Networks:
– VPN, Local VN provided with Virtual Machines

● Virtual Running Environments:
– chroot (POSIX syscall), fakeroot utility UNIX, Linux

Vserver

● Virtual File Systems
– Fuse, UnionFS, PlasticFS (uses LD_PRELOAD)

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Other “Virtuality”

● Environmental Subsystems.
– system call conversion: e.g. Posix -> Win32

● System Call Interposition.
– Systrace: system call access manager
– Janus, Ostia: application firewall.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Virtual Square Goals
● We have seen a wide (wild ;-) world of

different kinds of virtuality based on
different ideas, several tools

● Keyword #1: communication
– different VMs must be interconnected

● Keyword #2: integration
– different VMs can be seen as special cases of

a broaden idea of VM

● Keyword #3: extension
– several needs could be captured by some VM

abstraction, but there is not the specific
model of VM, nor the tool!

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

2 ½ Years!

● Ideas, tools... more than 100,000 lines of
free SW.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Keyword #1: Communication

● Virtual Distributed Ethernet:
– VDE clients: User-Mode Linux, Qemu, virtual

tap (all appl. using tap), tuntap (in linux
kernel), slirp.

– VDE appears as a Local Area Network
(Ethernet complaint) from all the connected
entities.

– The machines interconnected by a VDE may
be distributed on different hosts (no limits of
“distance”, km or hops).

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

VDE components
SWITCHSWITCH

CROSS
CABLE

VDE SWITCH VDE SWITCH

VM
(e.g. QEMU)

TunTap
Linux Module

VM
(e.g. U-ML)

VDE
plug

VDE
plug

VdeWire
(e.g. ssh)

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

VDE: Related Work

● VPN: (OpenVPN) point2point, for real
machines

● Overlay Networks: specific for application
(peer to peer, Akamai).

● VM networking: (tools provided with VM,
e.g. uml-switch) specific for VM

VDE:
● multipoint, general mesh
● no need for root (administration) access
● heterogeneous VM and non VM connected

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

VDEv2: advertisement
● VDEv2:

– modular design
– compatible with user-mode linux, qemu,

tuntap, (bochs, plex86), umview/lwipv6
– through the vdetaplib potentially compatible

any application using tap
– VLAN (802.1Q)
– FST (fast spanning tree)
– run time maneageable via unixterm (telnet or

web with vdetelweb)
– includes slirpvde and wirefilter
– status debug (NEW!)
– plugin support (NEW!)

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

VDEv2

● VDE-Switch
– number of ports configurable on command

line
– port0 is reserved for management clients, n-1

ports are available for connections.
– management UNIX socket for management

clients
● self-describing SMTP-like protocol

– modules: datasock (VM conn), tuntap,
consmgmt (management)

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

VDE cables

● VDE-plug
– is a VM that converts the Ethernet packets of

a VDE port into a stream connection (stdin-
stdout)

● VDE-wire
– can be any application able to give a

stdin/stdout stream connection

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Dual Pipe

● dpipe is a new (general purpose)
command we have added.

● Pipe are well known abstractions. The
following command prints the list of the
current directory:

ls | lpr

● Dpipe creates a bi-irectional connection
between the processes

dpipe cmd1 = cmd2

ls lpr

cmd1 cmd2

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

VDE cables, plugs, wires and
dpipe

● dpipe is used to create VDE-cables:
dpipe vde_plug = ssh vde.students.cs.unibo.it vde_plug

● this command connects by a dpipe the
local vde_plug with a vde_plug running on
a remote host (the wire is ssh)

● other applications can be used as wire
(e.g.netcat)

● In the example vde_plug refers to the
default switch. It is possible to run several
switches on the same host, an extra
option is needed in this case.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

wirefilter

● wirefilter can be put on a cable (e.g. for
network testing)

dpipe vde_plug /tmp/s1 = wirefilter -m /tmp/m = vde_plug /tmp/s2

● packet loss, delays, dup, speed, noise
figures, mtu, fifoness properties of the
line can be changed with command line
options or real time via a management
socket.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

SlirpVDE

VDE SWITCH VDE SWITCH

VM
(e.g. QEMU)

SlirpVDE

VM
(e.g. U-ML)

VDE
plug

VDE
plug

VdeWire
(e.g. ssh)

10.0.2.15

10.0.2.2

Firefox

http connection from firefox
running on 10.0.2.15 to
www.cs.unibo.it -> 130.136.1.110

10.0.2.16

http connection from slirpVDE
running on the hosting O.S. to
www.cs.unibo.it -> 130.136.1.110

Note: it supports Ipv4
only.
Ipv6 is already
unsupported.

http://www.cs.unibo.it/
http://www.cs.unibo.it/

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

vde_cryptcab

● Coded by Daniele Lacamera (danielinux)
● A vde_cryptcab is a distributed cable

manager for VDE switches.
● Server side

vde_cryptcab -s /tmp/vde2.ctl -p 2100

● Client side
vde_cryptcab -s /tmp/vde2.ctl -c foo@remote.machine.org:2100

● use a blowfish channel (random key
exchanged by scp).

mailto:foo@remote.machine.org

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

LWIPv6

● It is a LWIPv4/v6 stack implemented as a
library.

● Fork project from LWIP project (Adam
Dunkels <adam@sics.se>)

● Can be connected to any number of VDE,
TUN, TAP interfaces.

● It is a hybrid stack (not a dual-stack). One
single Ipv6 “engine” is able also to
manage Ipv4 packets in compatibility
mode (130.136.1.110 is managed as
0::ffff:130.136.1.110).

mailto:adam@sics.se

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

LWIPv6

● PF_INET, PF_INET6
● PF_PACKET for raw packet management

– support for user-level network analysis tools
(e.g. sniffers, ethereal)

– support for user-level dhcp clients.

● PF_NETLINK for configuration
● Packet filtering

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

LWIPv6 interface definition API

struct netif *lwip_vdeif_add(void *arg);
struct netif *lwip_tapif_add(void *arg);
struct netif *lwip_tunif_add(void *arg);

int lwip_add_addr(struct netif *netif,struct ip_addr *ipaddr, struct ip_addr
*netmask);

int lwip_del_addr(struct netif *netif,struct ip_addr *ipaddr, struct ip_addr *netmask);

int lwip_add_route(struct ip_addr *addr, struct ip_addr *netmask,
struct ip_addr *nexthop, struct netif *netif, int flags);

int lwip_del_route(struct ip_addr *addr, struct ip_addr *netmask,
struct ip_addr *nexthop, struct netif *netif, int flags);

int lwip_ifup(struct netif *netif);
int lwip_ifdown(struct netif *netif);

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

LWIPv6 socket API (just put lwip_ ahead)
int lwip_accept(int s, struct sockaddr *addr, socklen_t *addrlen);
int lwip_bind(int s, struct sockaddr *name, socklen_t namelen);
int lwip_shutdown(int s, int how);
int lwip_getpeername (int s, struct sockaddr *name, socklen_t *namelen);
int lwip_getsockname (int s, struct sockaddr *name, socklen_t *namelen);
int lwip_getsockopt (int s, int level, int optname, void *optval, socklen_t *optlen);
int lwip_setsockopt (int s, int level, int optname, const void *optval, socklen_t optlen);
int lwip_close(int s);
int lwip_connect(int s, struct sockaddr *name, socklen_t namelen);
int lwip_listen(int s, int backlog);
int lwip_recv(int s, void *mem, int len, unsigned int flags);
int lwip_read(int s, void *mem, int len);
int lwip_recvfrom(int s, void *mem, int len, unsigned int flags,
 struct sockaddr *from, socklen_t *fromlen);
int lwip_send(int s, void *dataptr, int size, unsigned int flags);
int lwip_sendto(int s, void *dataptr, int size, unsigned int flags,
 struct sockaddr *to, socklen_t tolen);
int lwip_socket(int domain, int type, int protocol);
int lwip_write(int s, void *dataptr, int size);
int lwip_select(int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset,
 struct timeval *timeout);
int lwip_ioctl(int s, long cmd, void *argp);

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

VDETELWEB
● It is the Web/Telnet Server for VDE switch

configuration.

● It uses the LWIPv6 library

● It has two connections to the controlled VDE
switch:

– management socket to give commands
– port0: the ethernet port used by the TCP-IP

stack.
● It reads the set of commands, descriptions,

arguments from the switch itself.

● Telnet has history/command editing and
support for asynch debug output (NEW)

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

VDETELWEB: telnet

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

VDETELWEB: Web Interface

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Keywords #2/#3:
Integration and Extension

●Questions:
– is there a model able to capture several

different types of “virtuality”?
● File System virtuality (Virtual FS: FUSE, chroot,

unionfs, chroot, fakeroot, etc)
● Networking virtuality (VPN, VDE)
● ...

– are there practical problems that cannot be
solved with current models of Virtual
Machines?

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

View-OS

A process with a view...

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

View

● Each process has a view of the “world”.
– meaning of a path
– IP address, routing
– ...

● Global View assumption: all the processes
running on the same computer share the
same view.

● (Almost) true in POSIX. Some notable
exceptions: chroot and.... virtual
machines.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

View and Virtual Machines

● SVM require the boot of an entire OS.
● User-Mode Linux is a SCVM, but it boots a

Linux kernel.
● Fakeroot, chroot, FUSE, systrace etc. are

specific virtualizations.
● chroot, FUSE, tuntap etc. require root

access to run

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Global effects of commands
● A command has a global effect when it

changes the view of all the processes
running on the same machine.
– e.g. mount of a filesystem
– e.g. changing the IP address

● Some operations are forbidden to
ordinary users just because the operating
system is not able to give local effects to
commands:
– e.g. mount of a disk image
– e.g. define a VPN for a user
– e.g. change IP address/routing for a process.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

View-OS breaks the
Global View Assumption

● Each process can have its own “view” of
the world.
– mount of filesystems
– redefinition of access permissions to

resources
– definition of interfaces/IP addresses/routing
– definition of devices
– ...

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

View-OS Goals

● Redefinition of System Call behavior
● Definition of new System Calls
● Binary Compatibility with existing

software
● Modularity and Composition of local view

definition
● Non-privileged use.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

View-OS and security
● A process can change its view with no

security risks.
– local mount of a disk image. It is just a

sofisticated access to a file!
– definition of a local VPN. The virtual interface

used by the process is just a network
connection for the hosting computer

● All these operation can be done by
running a SVM or User-Mode Linux.
– no extra risks,
– waste of resources and time: boot of an

entire kernel!

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

View-OS and Security
(the other way round)

● Loopback mount of a personal disk image
(with private data on it) need to set carefully
the access permissions (as we'd want a local
effect but the kernel can only provide a
global mount)

● Testing an unknown program/browsing
dangerous edges of the internet can be very
risky. Most hackers have “fake” user
accounts to do such experiments. The
definition of a very limited view of the
filesystem/networking around the
program/browser could act like a sandbox.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

View-OS implementation

● Specific Kernel:
– need a lot of time to reach a usable level
– need even more time to reach a suitable

level of reliability.

● Virtual Machine
– this is a new model of virtual machine: Partial

Virtual Machines (ParVM)

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Partial Virtual Machine (ParVM)

● A Partial Virtual Machine
– support the same ISA of the hosting machine
– support the same ABI of the hosting machine
– can redefine some calls.

● ParVM can be composed.

VIRTUAL SQUARE VIEW-OS

PARTIAL VIRTUAL MACHINE

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMVIEW=VIEW-OS as a ParVM

● UMVIEW is a generic ParVM (SCVM).
– UMVIEW load modules for specific

virtualizations
– UMVIEW running without modules is an

empty ParVM (each call is directly mapped on
the same call of the hosting machine).

OS

Hardware

OS

Hardware

Application Process

OS

Hardware

VIEW-OS
(no mod)

OS

Hardware

Application Process

OS

Hardware

OS

Hardware

Application Process

OS

Hardware

VIEW-OS

OS

Hardware

mod

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Composition of Modules

● Modules can be composed.

● It is like superimposing overlays

● Module composition can be done by one instance of
umview. Internal call must be captured (PURELIBC)

UMVIEW

mod2

UMVIEW

mod1

mod2

UMVIEW

mod1

Internal
System Call
Capture

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UNIX is file system centric

● Pathname = Global Naming Scheme
● /dev, fifo, UNIX socket, /proc
● Advantages:

– no specific system calls
– inheritance of many “methods”, e.g. access

prot.

● Overlay of file system subtrees =
redefinition of what got the name from
the subtree

● Basic operation: mount

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMVIEW mount
● Mount is a “view tranformation” function:

v
1
 = m

1
(v

0
)

● A further mount “sees” the modified view

v
2
 = m

2
(v

1
) = m

2
(m

1
(v

0
))= m

2
◦m

1
(v

0
)

● UMVIEW can mount an image hidden by the
mount operation itself

● UMVIEW can mount files (not only directory)

● UMVIEW mount can change the view outside
the mountpoint

● UMVIEW can mount on a non-existing
mountpoint

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Nested UMVIEW
● What happens when a user

starts UMVIEW into
UMVIEW?

umview xterm &
● At the time of activation

both ParVM instances share
the view, then each one can
do further “mount”s

● It is a “virtual” instance: the
same UMVIEW take into
account the “view split” (by
the treepoch data struct).

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Unfortunately...

● there are exceptions to the file-system
naming scheme

● the most notably exception is networking:
– network interfaces are devices but do not

appear in /dev
– there is one stack per protocol family in the

kernel, no file system naming for stacks.
– the “Berkeley socket” API does not (yet?)

support multiple stacks.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMVIEW structure

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMVIEW: capture of process
syscalls

● UMVIEW uses ptrace to capture process
syscalls. Ptrace was created for
debuggers. The debugger (UMVIEW in our
case) receives a signal each time one
controlled process issues a system call,
this latter process stops. The debugger
can inspect and change the memory of
the process and then restart it.

● It is the same technique used by user-
mode linux.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMVIEW: compatibility and
performance

● ptrace is provided as a standard feature of the linux
kernel

● UMVIEW runs linux unmodified binaries on any linux
kernel (2.6)

● We provide patches for the kernel of the hosting system
to increase the performance

– PTRACE_MULTI: executes several ptrace requests in a
single call (including load/store of large chunks of
data)

– PTRACE_SYSVM: provide a method to skip useless
upcalls.

● ptrace was created for debugging. There is an
international discussion about the best kernel interface
for virtual machine support.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Internal System Call Capture
problem

● System calls generated by
modules must be captured.

● Modules use libraries (that can
do system calls!)

● Modules are loaded as shared
libraries (for performance) thus
run in the same addressing
space

● There is the need for a “self-
inspection” tool: a process
should be able to capture the
system call generated by itself!

mod2

UMVIEW

mod1

Internal
System Call
Capture

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

PURE_LIBC
● Is an overlay library. It uses GLIBC and

redefines some GLIBC calls. (e.g. syscalls, stdio)

● When loaded with LD_PRELOAD, it captures the
calls from the process involving system call.

● The interface is made by 4 lines of code:
typedef long int (*sfun)(long int __sysno, ...);
extern sfun _pure_syscall;
extern sfun _pure_socketcall;
extern sfun _pure_native_syscall;

_pure_syscall and _pure_socketcall can be set to
capture functions
_pure_native_syscall is the way to call the real syscall
hidden by the library.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMVIEW modules
● A module implements one specific abstraction

– umfuse: virtual file systems
– umdev: virtual devices
– lwipv6: (umlwip) virtual networking

● The interface for modules is composed by:

– init: set a structure with all the managing
functions

– a “choice” function (the module asks to the
question: “is this path/mounttype/protocol etc...
up to you?”, returns a timestamp

– one function for each managed system call,
with the same interface of the system call.

– one upcall function register for select/poll.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMFUSE
● It provides the virtual file system

abstraction
● It needs submodules, user-mode

implementations of the file system
structures.

● It is a compatibility layer between
UMVIEW and FUSE (M. Szeredi,
fuse.sf.net, in the linux kernel since
2.6.15).
– It is a source level compatibility, source code

of FUSE modules must be compiled with
different libraries to run with UMFUSE.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMFUSE FS modules
● UMFUSEEXT2(*): ext2, ext3 file systems

– uses the ext2fs lib
● UMFUSEISO9660(*): iso9660 (rock_ridge, joliet)

– mounts also compressed iso images

– uses the llibcdio/libiso9660 libs
● UMFUSEENCFS: encoded FS

● UMFUSEFSSH: gives FS view to an ssh session

● UMFUSECRAM: cram (initrd), auto endianess(*).

● UMFUSEFSFS(*): Fast Secure File System (Cocchiaro,
2006), experimental

(*): developed by the V2 project, FUSE compatible.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

One word on FSFS

● Fast Secure File System is a secure network file system.

– Encrypted NFS requires a lot processing power on
the server (expecially with a large number of clients)

– Users may want (need) their data to be stored in
encrypted formats on hard disks (privacy disclosure
for hard disk maintenance)

– Solution: data is encrypted on disks, encrypted files
are sent on a clear channel to the client. The cost of
encription is moved to client, data is stored and
transmitted in an encrypted form.

● It is a bit more complex than this, control streams must
be encrypted and some measures must be taken for
“record&playback” attacks....

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMFUSE @ work
● The use of umfuse is very simple.

– note that the example uses the standard GNU-
linux commands. (it is the same “mount” used
by root)

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMFUSE @ hard work!
● In this example a file system mounted by ssh

contains an encrypted fs. The encfs is mounted and
there is an ext2 image inside. The third mount is on
the same target dir of the first!

Passwords are
entered in the
UMVIEW
console
window.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMDEV

● UMDEV implements virtual devices.
● The naming item for a device is a special

file (some device can define several
special files).

● From the process “view” access to
devices is a standard file access
(open/read/write/close...) + specific ioctl
of the device.

● UMDEV is able to give the same
“perception” to processes.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMVIEW and ioctl

● UMDEV provide ioctl virtualization
● ioctl is a “last resort” call able to manage

hundreds of different requests with
different arguments.

● ioctl itself is fd based so it is routed to the
module who managed the open.

● there is a special call of the choice
function (CHECKIOCTLPARMS) to define
size/management/direction
(input/output/I-O) of the args.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMDEV testmodules

● UMDEVNULL: test module. redefines a
/dev/null device, echo what is sent to it

● UMTRIVHD: creates a ramdisk: a chunk of
malloc-ed memory is given as a block
device.
– it is possible to create and mount a

filesystem on it.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMDEVMBR

● This UMDEV submodule manages the
MBR (EMBR) structure of disk images.

● When a disk image is mounted on a file
(say /tmp/disk) it creates the special files
to access all the partitions (/tmp/disk1 ...
/tmp/disk63)

● It is possible to use fdisk (ddisk on
powerpc linux) to repartition the hard
disk, after the partition map reload, the
new partitions are ready.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMDEV @
Work

● In this example:

– I tried to partition my
real HD /dev/hda as a
user (permission denied)

– I mounted a disk image
on /dev/hda

– In the new view I could
change the partition
table

– I created an ext3
partition on /dev/hda5

– I mounted the new
partition on /mnt
(umfuseext2)

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMDEVTAP

● Virtual TAP
● emulates the standard tuntap interface

(/dev/net/tun)
● Net packets get sent to a vde switch

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMBINFMT

● It implements the same interface of the
BINFMT kernel module.

● It is possible to choose the “interpreter”
for an executable depending on file
extensions or magic numbers (pattern
matching).

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMBINFMT @
Work

In this example

– on a linuxppc I show two
executables for other
architectures

– I load Aumbinfmt

– I mount it on the same dir
of the kernel one (can be
mounted elsewhere,
scripts are compatible if
the same dir is used)

– I register the interpreter
(QEMU)

– The executables run (ls
i386 is a real ls, ls on arm
is busybox command)

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMLWIP

● It is the virtual networking module
● UMLWIP uses LWIPV6
● The module to load is named lwipv6.so
● It creates virtual interfaces.
● Compatible with the modern iputils.
● After the module has been loaded the

interfaces can be configured and used.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMLWIP @
Work

● lwipv6.so without
extra options
creates two
interfaces lo0 and
vd0 (vde)

● vd0 is configured
using iputils (Ipv6
gets auto-
configuration)

● ssh to a remote
host shows we
are using the
virtual network

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

VIEWFS
(under development)

● ViewFS is a File system remapping
module

● Some features:
– Directory merge,
– WORM access,
– file and directory hiding

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

UMMISC

● This module virtualize several concepts
like:
– process ids
– time
– system id
– user/group id

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li The Operating System ZOO

www.oszoo.org

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

OSZOO
● OSZOO is a

repository
of Disk
Images for
VM.

● It is
possible to
test an O.S.
just by
downloadin
g the image
and run it.

● html and
bittorrent
access to
images.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

LIVE OSZOO

● Now it is
possible
to run OS
images
directly
on our
servers.

● Users
need just
a browser
with jvm
support.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Fedora
5

on Live
OSZOO

This is the
example of a
GNU-Linux
Fedora Core
5 loaded on a
Live OSZOO
virtual
machine.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Virtual Square
usage scenarios

● are so many that this should be a specific
seminar, not a slide.

● Prototyping

● Security

● in general “user freedom” ;-)

● Education: Virtual Square can be used for lab
exercises in System Architecture, Operating
Systems, Networking, Security, Distributed
Systems etc...

● Virtual Square in Education: is the topic of an
international cooperation with Prof. Michael
Goldweber, Xavier Univ. Cincinnati, OH.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Virtual Square: what is next?
● LWIPv6 internal dhcp client

● VDE-XEN gateway

● SNMP support for VDE

● Mobility support for VDE

● UMVIEW Modules:

– Viewfs

– RemoteSyscall

– Network multistack (recursive LWIP)

– Inter module communication

● UMFUSEFAT

● Extension to the model

– consistent view of virtual users

MISSING BLOCKS/TILES

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Still Missing...

● Support for Klik filesystem
● Cross Platform local Procedure Call.
● Virtual SysV IPC
● WWFX
● Porting to other OS (MacOSX)
● VDE SlirpV6

MISSING BLOCKS/TILES

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Open Problems...

● Native Kernel support for VM
● mmap (write access)
● Museum (licenses!)
● Bugs... (there is always one around the

corner)

Open Problems on BLOCKS/TILES

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Kernel, μKernel and mKernel!
● (Monolitic) Kernels

– bad design, efficient

– Linux is very well supported and widely applied
● Micro Kernels

– nice design, inefficient

– Lack of drivers, rarely applied outside research
● (or used with monolitic kernels loaded as servers)

● MilliKernel (NEW!)

– modular monolitic kernel able to use external servers for
hi-level structures (File System, Networking, Memory
Managent Policies) or for lo-level structures (drivers).

– It is up to the user/administrator to decide what should be
load as server or inside the kernel (efficiency vs.
reliability+flexibility).

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

Idea...

VIEW-OS/UMVIEW modules seems to be
modules for a Linux Millikernel structure...

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

The Virtual Square TEAM
●Renzo Davoli – rd235,reenzo (designer, main developer)

●Ludovico Gardenghi – garden (viewfs, optimization,
umview inter module communication, logging interface)

●Filippo Giunchedi – godog (Debian maintainer, vde-snmp)

●Luca Bigliardi – shammash (libcomm, autolink)

●Diego Billi (lwipv6 filtering, optimization)

●Andrea Gasparini – gaspa (nesting, kernel-patches)

●Daniele Lacamera – danielinux (vde_cryptcab, debian
packets, vde-l3).

●Mattia Gentilini MG55 (freelive oszoo)

●Andrea Forni - Gendag (remote procedure call, Slirpv6)

● Andrea Saraghiti, Mattia Belletti,..... and many others.

V
ir

tu
a
l
S

q
u
a
re

 ©
 2

0
0

7
 C

o
p
y
le

ft
,

R
e
n
zo

 D
a
v
o
li

To be continued...

renzo@cs.unibo.it

