Tau Charm flavor factory

- Accelerator
- Physics
- Detector
- International scenario

More information available in "la Biodola meeting" talks : https://agenda.infn.it/conferenceDisplay.py?confld=6193

Accelerator

- Design parameters
- Project status

Physics

- Financial and human resources
- Primitive planning

Accelerator study group

LNF team

- M. Biagini
- M. Boscolo
- A. Chiarucci
- A. Clozza
- A. Drago
- S. Guiducci
- C. Ligi
- G. Mazzitelli
- R. Ricci
- C. Sanelli
- M. Serio
- A. Stella
- S. Tomassini

ESRF & Pisa team

- P. Raimondi
- S. Liuzzo
- E. Paoloni

CabibboLab team

- S. Bini
- F. Cioeta
- D. Cittadino
- M. D'Agostino
- M. Del Franco
- A. Delle Piane
- E. Di Pasquale
- G. Frascadore
- S. Gazzana
- R. Gargana
- S. Incremona
- A. Michelotti
- L. Sabbatini
- LNS team
- G. Schillaci
- M. Sedita

Accelerator scheme superB inspired

- Energy tunable currently in the range E_{cm} = 2-4.8 GeV
- 2*10³⁵ cm⁻² s⁻¹ maximum peak luminosity at the τ/charm threshold and upper
- Low currents and crab waist solution for the interaction region
 - Low power consumption
- Polarization available on one beam (65-70%)
- A symmetric machine
- Compact dimensions (about 340 Meters for the rings)
- Only positrons damping ring
- Competitive luminosity also at lower energy (currently 2 GeV)

Beam parameters

- Beam parameters to reach a baseline luminosity of 10³⁵ cm⁻² s⁻¹ @ 2 GeV/beam have been chosen
- An upgrade to 2x10³⁵ cm⁻² s⁻¹ can be possible by increasing the beam current
- Design features are the same as for the SuperB design:
 - "Large Piwinski angle & crab waist sextupoles" collision scheme
 - Low H-emittance lattice
 - Small H-V coupling \rightarrow ultra low V-emittance
 - Small IP β functions and beam sizes
 - Beam-beam tune shifts < 0.1
 - Same RF frequency as PEP-II (re-use of cavities)
 - Low beam power

Table of parameters @ 2 GeV/beam

- Baseline design L=10³⁵, with possibility to increase currents for 2x10³⁵ cm⁻² s⁻¹
- Intra Beam Scattering and hourglass factors included
- Beam power about 15 times less than the SuperB baseline one (4 MW (HER) and 2MW (LER) of RF power)

Parameter	Units		
LUMINOSITY	$10^{35} \text{ cm}^{-2} \text{ s}^{-1}$	1.0	2.0
cm Energy	GeV	4.0	4.0
Beam Energy	GeV	2.0	2.0
Circumference	m	340.7	340.7
X-Angle (full)	mrad	60	60
Piwinski angle	rad	10.84	10.80
Hourglass reduction factor		0.85	0.84
Tune shift x		0.004	0.006
Tune shift y		0.089	0.120
β _x @ IP	cm	7	7
β _y @ IP	cm	0.06	0.06
σ _x @ IP	microns	18.95	19.97
σ _y @ IP	microns	0.088	0.092
Coupling (full current)	%	0.25	0.25
IBS emittance growth factor		1.8	2
Emittance x (with IBS)	nm	5.13	5.70
Emittance y (with IBS)	pm	12.8	14.3
Bunch length (with IBS)	mm	6.9	7.2
Beam current	mA	1745	2600
Buckets distance	#	1	1
lon gap	%	2	2
RF frequency	Hz	4.76E+08	4.76E+08
Number of bunches	#	530	530
N. Particle/bunch	#	2.34E+10	3.48E+10
Beam power	MW	0.16	0.24
Transverse damping times (x/y)	msec	35/49	35/49

Design robustness: the luminosity tune scan (BINP)

CW advantage:

•BB coupling resonances are suppressed

•Wide red area corresponds to 10³⁵ cm⁻²s⁻¹

Lumi	VS
Ener	gy

Parameter	Units			
LUMINOSITY	10^{35} cm ⁻² s ⁻¹	1.0	1.0	0.2
c.m. Energy	GeV	4.6	4.0	2.0
Beam Energy	GeV	2.3	2.0	1.0
Circumference	m	340.7	340.7	340.7
X-Angle (full)	mrad	60	60	60
Piwinski angle	rad	11.19	10.84	14.66
Hourglass reduction factor		0.86	0.85	0.83
Tune shift x		0.004	0.004	0.002
Tune shift y		0.078	0.089	0.064
β _x @ IP	cm	7	7	7
β _y @ IP	cm	0.06	0.06	0.06
σ _x @ IP	microns	18.50	18.95	20.67
σ _y @ IP	microns	0.086	0.088	0.096
Coupling (full current)	%	0.25	0.25	0.25
IBS emittance growth factor		1.3	1.8	4.3
Emittance x (with IBS)	nm	4.89	5.13	6.11
Emittance y (with IBS)	pm	12.2	12.8	15.3
Bunch length (with IBS)	mm	6.9	6.9	10.1
Beam current	mA	1720	1745	1000
Buckets distance	#	1	1	1
lon gap	%	2	2	2
RF frequency	Hz	4.76E+08	4.76E+08	4.76E+08
Number of bunches	#	530	530	530
N. Particle/bunch	#	2.3E+10	2.3E+10	1.3E+10
Beam power	MW	0.28	0.16	0.05
Transverse damping times (x/y)	msec	23/33	35/49	35/49

Radiative gamma-gamma luminosity (e- e- mode)

2.0	2.3*10^32	9.2*10^31	5.2*10^31	3.7*10^31
1.5	3.3*10^32	1.3*10^32	7.4*10^31	5.2*10^31
1.0	5.8*10^32	2.3*10^32	1.3*10^32	9.2*10^31
0.5	1.4*10^33	5.8*10^32	3.3*10^32	2.3*10^32
E1 F2	0.5	1.0	1.5	2.0

Project status

From Mini Mac superb 2009 detailed work needed on:

- lattice designs
- dynamic aperture
- beam-beam and crabbed waist
- electron cloud
- Touschek effect and beam-gas scattering
- Interaction region
- QD0
- Low emittance tuning, tolerances
- RF & Impedance
- Feedback
- Injection
- Site considerations
- Polarization
- Machine availability

superB end 2012

- ✓ lattice design DONE • dynamic aperture IN PROGRESS ✓ beam-beam and crabbed waist DONE \checkmark electron cloud DONE ✓ Touschek effect and beam-gas scattering DONE ✓ Interaction region DONE • QD0 IN PROGRESS ✓ Low emittance tuning, tolerances DONE • RF & Impedance ✓ Feedback DONE ✓ Injection DONE ✓ Site considerations DONE ✓ Polarization DONE
- Machine availability ?

Tau charm middle 2013

✓ lattice design	DONE
• beam-beam and crabbed waist (assume	d similar to SuperB
✓ dynamic aperture	DONE
 electron cloud 	IN PROGRESS
✓ Touschek effect and beam-gas scattering	ng DONE
 Interaction region 	IN PROGRESS
• QD0	IN PROGRESS
 Low emittance tuning, tolerances 	DONE
 RF & Impedance 	
✓ Feedback	DONE
✓ Injection	DONE
✓ Site considerations	DONE
✓ Polarization	DONE
 Machine availability ? 	

The site

A closer view

τ-Charm Pictorial View: FEL option

τ-Charm Pictorial View: LINACs

τ-Charm Pictorial View: DR & TL

Interaction Point

Main Rings side by side

First design of MR magnets

10 -

5 -

0

-35

-30

-25

-20

-15

C. Sanelli

10

Dynamic Aperture at Best Points

Liuzzo

Final Focus collimation system

Touschek lifetime-with tracking

# σX (@QF1)	Machine set	Lifetime (s) with IBS	Lifetime (minutes)
30	R(QD0)=1.5cm; R(QF1)=2cm; R(10m-)=3cm	376 (162 s NO IBS)	6.3
40 +kinterm	R(QD0)=2.0cm; R(QF1)=3.5-4.6cm; R(10m-)=3cm with kinematic term	484	8.0

Lifetime Summary

	minutes		
Touschek	7.8		
Coulomb beam-gas	1.5hrs*60		
Bremsstrahlung with residual gas	80hrs*60		
Radiative Bhabha	11.3	В	oscolo

DR magnets design

Long And short Quadrupoles

224

Sextupoles

580

Damping Ring Magnetic System

- Bending Dipole MagnetQuadrupole Magnetok
- Sextupole Magnet
- Horizontal and Vertical Steering Magnet

to be done

Bending Dipole:

Nominal Energy GeV	1.0	
Nominal Mag. Field	Т	1.7
(@ pole center)		
Bending Radius m	1,96	
Dipole number	16	
Gap (@ pole center)	m	0.027
Magnetic Length	m	0.77
Deflection angle rad	0.392	27
Ideal orbit sagitta	m	0.03766
Type of magnet: Curv	ed, C	shape, parallel
ends, laminated (1-1.	5 mm)-massive
(t.b.c.)		

ok

C. Sanelli

Quadrupole Magnet:

Nominal Energy GeV 1.0 Nominal Gradient T/m 20 Quadrupole number 12 + 38**Bore Radius** m 0.035 Magnetic Length 0.30/0.15 m Type of magnet: Four Fold Symmetry laminated (1-1.5 mm) Max. Iron Induction 1.6 Т 0.06/0.08 Pole width m Amper*turns/pole 10120 Α (@ 20.0 T/m)

Magnetic field from Poisson run on file QUADDR.AM

C. Sanelli

Sextupole Magnet:

Nominal Energy	GeV	1.0	
Nominal Gradient		T/m ²	154
Sextupole number			24
Bore Radius	m	0.035	
Magnetic Length		m	0.1
Type of magnet: Six Fold Symmetry			
laminated (1-1.5 mm)			
Max. Iron Induction		Т	0.5
Pole width	m	0.08	
Nominal A*turns/pole	ć	Α	2260
(@ 154 T/m²)			

Magnetic field from Poisson run on file ANKASEXT.AM Problem title line 1: SESTUPOLO ANKA 15/04/2013

Damping Ring mechanical layout

La Biodola - Isola d'Elba, Italy 26-31 May 2013

DR Results Vacuum profile

Simulations show that a mean pressure of about 3×10⁻⁹mbar expected.

The Pressure profile for Damping ring has been simulated for nitrogen gas at 293K, taking into account thermal gas load too.

The SIP are assumed to be StarCell 120 l/s, connected to vacuum chamber by means of RF screened ports.

τ- Charm - Injection Vacuum System Preliminary

S. Bini, F. Cioeta, A. Clozza

Chaos can be view as a distributed computer

τ -charm alignment case study

Feedbacks

Research activities that are common to DAFNE and Tau-Charm feedback systems - Transverse feedback

The upgrade of the feedback systems designed for the SuperB is absolutely valid also for the Tau-Charm Factory.

It is not even foreseen a scaled version respect to SuperB feedback design in terms of power or digital processing hardware, although Tau-Charn harmonic number should be smaller than Superb one, so, it asks for less computing but this variation is basically negligible.

Drago

- Longitudinal feedback

- Simplified analog longitudinal back end without QPSK modulation (only with amplitude modulation)

8-bit FPGA processing units tests during DAFNE runs

Tau-Charm Injection System

Total electron linac energy 2.9 GeV Total positron linac energy 2.3 GeV To MRs

	Linac L1	Linac L2	Linac L3
N. of klystrons	3	6	7
N. of cavities	9	18	21
Max. Energy (GeV)	0.62	1.24	1.45

The number of klystrons and cavities allows to reach the maximum positron energy of 2.3 GeV also with one klystron off

index of the accelerator white paper

- Introduction
- Collider Main Rings
 - Beam parameters
 - Lattice
 - Interaction Region
 - Dynamic Aperture
 - Tolerance to errors
 - Backgrounds and lifetimes
 - E-cloud instability
 - Intra Beam Scattering
- Injection Complex
 - General layout
 - Sources (e+, e-)
 - Damping Ring
 - Linacs
 - Transfer Lines

- Accelerator Systems
 - Diagnostics
 - Feedbacks
 - RF
 - Controls
 - Vacuum requirements
 - Magnets
 - Mechanics
 - Survey and alignment
 - Health Safety and Environment
- Conventional Facilities
 - Layout & site
 - Infrastructures
 - Civil engineering
 - Power electronics
 - Fluids
 - Cryogenics
- Costs and schedule

physics

• Is there a strong physics case?

Discovery physicsProgress physics

Discovery: general considerations

- The success of the standard model and the "no show" of new physics (so far) at LHC impose a systematic and unbiased research program
- The general model independent parametrisation of SU2xU1 symmetric effective interactions include about 18 operators
- The four lepton sector involves three operators
- The two lepton sector five

Gauge Invariant dim-6 operators in the SM

- $[\bar{L}_{p}^{i}\gamma_{\mu}L_{q\ i}][\bar{L}_{r}^{j}\gamma^{\mu}L_{s\ j}]$ $[\bar{E}_{p}\gamma_{\mu}E_{q}][\bar{E}_{r}\gamma^{\mu}E_{s}]$ $[\bar{L}_{p}\gamma_{\mu}L_{q}][\bar{E}_{r}\gamma^{\mu}E_{s}]$

4 Leptons

Gauge invariant with two fermions

- $[\bar{L}_p \sigma_{\mu\nu} E_q H] B^{\mu\nu}$ $[\bar{L}_p \sigma_{\mu\nu} E_q \sigma^I H] W^{I \ \mu\nu}$ $[\bar{L}_p \gamma_\mu L_q] [H^{\dagger} D^{\mu} H]$ $[\bar{L}_p \sigma^I \gamma_\mu L_q] [H^{\dagger} \sigma^I D^{\mu} H]$ $[\bar{E}_p \gamma_\mu E_q] [H^{\dagger} D^{\mu} H]$

2 Leptons + Gauge bosons

A "Fermi" type Lagrangian

with conventional $C_i = 4 \pi$

- Two probes
 - Production (e+ e- incoming)
 - Decay (tau)

PRODUCTION
$$\frac{4\pi\alpha^2}{3s}$$
 .vs. $\frac{4\pi\alpha}{3}\frac{4\pi}{\Lambda^2}\frac{s}{\Lambda^2}$

the ratio
$$\sim \frac{s}{\alpha \Lambda^2} \frac{4\pi s}{\Lambda^2} \sim \frac{4\pi}{\alpha} \left(\frac{s}{\Lambda^2}\right)^2$$

DECAY
$$\Gamma_{rare} \sim \left(\frac{4\pi}{\Lambda^2}\right)^2 M^5$$

 $\Gamma_{weak} \sim G_F^2 M^5$

$$\frac{\Gamma_{rare}}{\Gamma_{weak}} \equiv BR \simeq -\frac{(4\pi)^2}{G_F^2 \Lambda^4}$$

$$G_F \sim M_F^{-2}$$
 where $M_F \sim 300 \text{ GeV}$
 $\implies BR \simeq \left(\frac{M_F^2}{\Lambda^2}\right)^2 (4\pi)^2$

Decay much more powerful

- If BR \approx 10^-9 are accessible

the interference case

- New physics may occur via "Flavor violation" and/or via "Dirac violation"
 - novel Dirac structures for contact interactions

In this case NP can interfere with ordinary physics

interference in production

- Production interference can be detected from forward backward asymmetries (both signs)
- Polarization is an essential asset
- FB asymmetries of the order 10^-6 can be sensitive to ∧ ≈ 10-20 TeV

Tau charm and LEP limits

Discovery: two fashionable benchmarks

- CPV in D mixing (or decay)
- Tau 📩 mu gamma

CPV IN D MIXING

- In the SM, M_{12} and Γ_{12} dominated by longdistance, non-calculable but real with excellent accuracy (O(1°))
- Goal: search for NP manifesting itself in $\arg(M_{12}/\Gamma_{12}) \ge \text{few degrees}$
- Present status: -39° < arg(M_{12}/Γ_{12}) < 35° @95% probability

- How do we get there?
 - define $|D_{s,L}|=p|D^{o}|\pm q|D^{o}|$
 - measure $\mathbf{x} \approx |\mathbf{M}_{12}|/\Gamma$, $\mathbf{y} \approx |\Gamma_{12}|/2\Gamma$, $|\mathbf{q}/\mathbf{p}| - 1\mu \arg(\mathbf{M}_{12}) - \arg(\Gamma_{12})$ and $\phi_{\mathbf{f}} \approx \phi = \arg(\mathbf{y} + i(1 - |\mathbf{q}/\mathbf{p}|)\mathbf{x}) - \arg(\Gamma_{12})$
 - extract $|\mathbf{M}_{12}|$, $|\Gamma_{12}|$, $\arg(\mathbf{M}_{12}/\Gamma_{12})$
 - accuracy on |q/p|-1 and on ϕ crucial to measure $\arg(M_{12}/\Gamma_{12})$ and to disentangle $\arg(M_{12})$ from $\arg(\Gamma_{12})$ (relative to a CPconserving amplitude such as a CF decay)

D MIXING @ SYMMETRIC e+e-

- Time-integrated decays of quantum-correlated D-anti D pairs, with Dbar decaying in a flavour-specific final state g:
 |<f,g|(DD)_{ηc}>|² = |A_fĀ_g|² (1 r_fcos(δ_f+φ)(1+η_c)y
 + r_f sin(δ_f+φ) (1+η_c) x + O(x²,y²)), with
 r_f=Ā_f/A_f, δ_f strong phase
- At the $\psi(4040)$ produce DD* pairs, obtain η_c =-1 for D* \rightarrow D π and η_c =1 for D* \rightarrow D γ , exploit the linear terms for η_c =1 to measure x, y, ϕ_3 Bondar, Poluektov & Vorobiev

D MIXING CPV REACH

	Belle-II (50 ab-1)	LHCb upgr. (50 fb ⁻¹)	Tau-charm (9 ab-1)
x (10 ⁻⁴)	8	1.5	1.7
y (10 ⁻⁴)	4	1	1.7
q/p -1 (10⁻²)	5	1	0.5
φ (°)	2.6		0.5

- Belle-II does not include strong phases from BES-III or Tau-charm
- LHCb upgrade x, y & ϕ should be revised as measurement from K_s $\pi\pi$ should allow for CPV
- Tau-charm extrapolated from Bondar et al
- Only Tau-charm allows for sub-degree determination of arg(M_{12}) and arg($\Gamma_{12})$

IMPLICATIONS FOR NP SCALE

 The upper bound on arg(M₁₂) can be turned into a bound on the coefficients of the relevant effective Hamiltonian:

- $H_{eff} = \sum_{i} (c_i / \Lambda^2) O_i^6$

• A lower bound of the NP scale Λ can be obtained for fixed couplings c_i , or an upper bound on the couplings c_i can be obtained for fixed NP scale Λ

Non-perturbative NP Λ > 4.6 10⁵ TeV

NP in α_w loops Λ > 1.4 10⁴ TeV

preliminary results

Tau pairs production rates

at $\sqrt{s} = 4.04 \text{ GeV}$ $\sigma_{ee \rightarrow \tau\tau} \cong 3.4 \text{ nb}$ at $\sqrt{s} = 10.58 \text{ GeV}$ $\sigma_{ee \rightarrow \tau\tau} \cong 1.0 \text{ nb}$

> Tau-Charm (L=2 x 10^{35} cm⁻²s⁻¹) \cong 7 x 10^{9} $\tau \tau$ events per year BELLE II (L=8 x 10^{35} cm⁻²s⁻¹) \cong 8 x 10^{9} $\tau \tau$ events per year [Snowmass year = 10^{7} s]

$$\tau \rightarrow \mu \gamma$$

Eγ for ISR ττγ background is lower than Eγ for τ → μγwhen the machine is operated at $\sqrt{s} = 4.2$ GeV

M.A.Giorgi

Background suppression BINP simulations

Based on good calorimetry (Cesium Iodide ensure that) and good pion muon identification .

Novosibisk proposes Farich, we think that time of flight is better (as in PANDA) in this energy range. Goal is factor 30 suppression of pion contamination. τFV

- BELLE-II [50ab⁻¹]: B($\tau \rightarrow \mu \gamma$) < 5 x 10⁻⁹, systematically limited - tau-charm: B($\tau \rightarrow \mu \gamma$) < 5 x 10⁻¹⁰, statistically limited

Also CP violation in τ decays

- Number of tau events at tau-charm and belle-II is comparable
- Final states in CP-violating observables involve multi-h (K or pi) + neutrino. More studies are needed to make a sensible comparison between the efficiency of tau-charm and Belle-II on these modes
- Polarization increases the number/improves the sensitivity of CP-violating observables and provides a better control on systematics

Progress physics

- Perturbative QCD
 - R and g-2
 - Tau hadronic decays
 - Fragmentation functions (pt dependent??)
 - Meson and baryon form factors
- Charm spectroscopy
- Precise determination of sin_theta_W
- Gamma gamma collisions (e- e- mode)

Example: the BessIII physics case

Study of hadron spectroscopy

search for non-qq or non-qqq states

- meson spectroscopy
- baryon spectroscopy

arXiv: 0809.1869

 Study of the production and decay mechanisms of charmonium states: J/ψ, ψ(2S), η_c(1S), χ_{c{0,1,2}}, η_c(2S), h_c(¹P₁), ψ(3770), etc.

New Charmonium states above open charm threshold.

Precise measurement of R values, τ mass, ...

Precise measurement of CKM matrix

Search for DDbar mixing, CP violation, etc.

Charmonia

Charmonium spectroscopy

 Charmonium states below open charm threshold are all observed

Above open charm threshold:

 many expected states not observed

many unexpected observed

Z(4430) Z(4250) Z(4050) Z(3900)	X(3872) XYZ(3940)	X(3915 X(4160 Y(4008 Y(4140 Y(4260 Y(4360
		X(4350

Y(4660)

Precision EW tests

Back to accelerator

- If you now wonder about cost and planning
 - Financial and human resources
 - Primitive planning
Cost projection

- Training from SuperB costing review
- A tau charm projected WBS based on, item specific, scaling factors from SuperB WBS
- More than 30 firms quotations entries

Sanelli

WBS Contributors:

- Linac (*R. Boni*)
- Diagnostics (M. Serio)
- Superconducting Magnets (P. Fabbricatore)
- Vacuum (A. Clozza)
- Cryogenics (C. Ligi)
- Radioprotection (A. Esposito)
- Feedbacks (A. Drago)
- RF (A. Gallo)
- Controls (G. Mazzitelli)
- Mechanics and Alignment (S. Tomassini)
- Conventional Safety (A: Chiarucci)
- Electric Services (Ricci R.)
- Fluids (G. Schillaci)
- Power Supplies (M. Sedita)

In addition evaluations by *A. Variola* on injector and C. Sanelli on magnets May 29, 2013

The superB effort

- 26 systems have been analysed in detail
- More than 1000 pages of documentation have been collected (available on web repository)
- In many cases three or more companies have been inquired for the best price
- Very preliminary layouts have been used to consider power distribution, cabling, cooling piping, etc., on the base of the past experience

Tau charm Factory case (work in progress)

- Linac for **2.9** GeV e⁻ and **2.3** GeV e⁺;
- Linac Length around **200** m;
- Two **Symmetric** rings;
- Storage Ring Length -> 600 -> 362 -> 326 m.

SuperB Final cost estimates

- The rough final cost partition (Meuros)
 - 530 the "bare" accelerator
 - 100 VAT
 - 100 Personnel
 - 80 SLAC donation (maximum reuse)
 - 140 ML risks and spares
- Unavoidable sum at least of the order of 650

Preliminary tau charm bare and "plus

tax" cost summary

COST EVALUATION SUMMARY (VAT Excluded)		VAT (21%/10%) TOTAL		
	k€	k€	k€	
LINAC SYSTEM	29614,54	6219,05	35833,59	
LINAC - DAMPING RING TRANSFER LINE	4285,40	899,93	5185,34	
DAMPING RING	12150,00	2551,50	14701,50	
ELECTRON BEAM TRANSFER LINE	4428,17	929,92	5358,09	
POSITRON BEAM TRANSFER LINE	4428,17	929,92	5358,09	
STORAGE RINGS	58756,23	12338,81	71095,04	
POLARIZATION	1991,00	418,11	2409,11	
INTERACTION REGION	8187,06	1719,28	9906,34	
SYNCHROTRON LIGHT SOURCES	0,00	0,00	0,00	
PHOTON LINES	0,00	0,00	0,00	
GENERAL FACILITIES	4816,42	1011,45	5827,86	
ELECTRIC SERVICES	4992,19	1048,36	6040,55	
CRYOGENICS	4018,00	843,78	4861,78	
CIVIL ENGINEERING	35551,88	3555,19	39107,07	
ARCHEOLOGICAL DIGGING AND VERIFICATION	2000,00	420,00	2420,00	
GEOLOGICAL PROSPECTION	89,22	18,74	107,96	
GAS PIPELINE CONNECTION	200,00	42,00	242,00	
WATER DUCT CONNECTION	200,00	42,00	242,00	
ELECTRIC DISTRIBUTOR CONNECTION	10200,00	2142,00	12342,00	
FIRE DETECTION SYSTEM	227,69	47,81	275,50	
FIRE EXTINGUISHING	736,86	154,74	891,61	
CRANE & LIFTING SYSTEMS	995,32	209,02	1204,34	
RADIATION PROTECTION	1083,35	227,50	1310,85	
CONVENTIONAL SAFETY SYSTEM	252,00	52,92	304,92	
PRELIMINARY EXTERNAL AREA MAKE-UP	3559,37	747,47	4306,84	
FINAL EXTERNAL AREA MAKE-UP	1000,00	210,00	1210,00	
TAU-CHARM COMPLEX COST	193762,88	36779,50	230542,38	

Super-B -> Tau-Charm Cost

Super-B / t-Charm Cost (Length)

For Tau-Charm only: C(M€) ≈149.5 + 0.132 *L(m) 300 < L(m) < 1200

Operating cost

• Around 15Meuros/year

superB spending profile (bare cost)

Tau charm spending profile (bare cost) (very preliminary)

superB personnel (macrosystems)

Tau charm personnel (macrosystems)

Tau charm personnel (qualification)

Tau charm master planning (very preliminary)

A consistent evaluation

- Italian tau charm points to a bare cost around 190
 MEuros
- BINP layout is valued similarly

Compact BINP tau charm: very preliminary cost

Item	800 m 2	.5 GeV	400 m 2.1 GeV	
		<u>M€</u>	M€	
•Detector		100	100	
•Collider		250	100 (1/2, less spin rot. and dam	ping wig.)
•Linac		40	30	
•Pol.e sour	се	1	1	
•Building, to engineer	unnels, ring, etc.	50	10 (renovation of equipment)	
Civil engineering (IT)			35	

241(141 + 35)

detector

- The main point is the Babar detector's reuse
- Specific work about
 - PID (pion rejection..)
 - Symmetric machine

The Babar metamorphosis (F. Grancagnolo)

detector

- Active discussions ongoing
- An LOI-type paper by the summer

Today's international scenario

- Competing machines/experiments:
 - Belle II, LHCb
 - Possible relay races
- Cultural affinity
 - MEG, MUtoE, Kloe, Panda, Jlab QCD, Hadron Physics,...LC
- Similar future projects
 - BINP (also compact), the Turkish project, Bess X??
- Opportunities for collaboration
 - Active: BINP, Poland
 - Sleeping: Cern (SuperB agreement ready and quotes a "superflavor factory"), Spain
 - To be rescued: France, Canada, Caltech, Brasil

interdisciplinary

I 17IGJ #VI#

A POSSIBLE HARD X-RAY FEL WITH THE SUPERB 6 GeV ELECTRON LINAC

D. Alesini¹, M. P. Anania¹, P. Antici², A. Bacci³, R. Bartolini⁵, M. Bellaveglia¹, M. Benfatto¹, R. Boni¹, R. Bonifacio⁸, M. Castellano¹, L. Catani⁴, A. Cianchi⁴, R. Cimino¹, E. Chiadroni¹, S. Dabagov¹, A. Gallo¹, D. Di Gioacchino¹, D. Di Giovenale¹, G. Di Pirro¹, A. Drago¹, M. Ferrario¹, F. Ferroni², G. Gatti¹, S. Guiducci¹, R. Gunnella⁹, S. Lupi², A. Marcelli¹, M. Mattioli², A. Mostacci², M. Migliorati², E. Pace¹, A. Perrone¹⁰, V. Petrillo³, R. Pompili⁴, C. Ronsivalle⁶, A. R. Rossi³, W. Scandale⁷, L. Serafini³, B. Spataro¹, C. Vaccarezza¹, A. Variola⁷, G. Venanzoni¹, F. Villa¹.

interdisciplinary

- Room to increase Linac Energy
- Possible use of the "Electron linac" (no e- DR)
- Room for long beamlines
- BTF in the 3 Gev range
- Laser-beam interactions
- Inverse Compton

•

conclusions

- The luminosity goal is supported by a consolidated lattice layout
- Fast progress strongly based on SuperB work
- Sound cost and planning estimates exist: more work needed to append an error bar
- A discovery machine and a powerful QCD and EW laboratory: on specific channels can challenge and overcome best actors in the next decade
- Interdisciplinary option concurrent with high energy mode viable on the Linac. On the main ring only compromising high luminosity.