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The physics case

Recently (in 2008), the observation of a microwave
continuum emission from air shower plasmas has raised the
Interest in a possible new detection technique for ultra-high
energy cosmic rays

The plasma is created after the release of the energy shower
In the atmosphere and it is made by electrons with
temperature of about 10° K

The plasma cooling process holds over a time scale of a few
nanoseconds and it comes mainly via the medium excitation.

A Microwave Bremsstrahlung Radiation (MBR) is emitted by
secondary electrons accelerating in collisions with neutral
molecules of the atmosphere.

The radiation is expected to be isotropic and un-polarized.

The AMY project aims to measure the MBR absolute yield
and its frequency spectrum between 1 and 20 GHz at the
Beam Test Faclility (BTF) of Frascati INFN National
Laboratory. The final purpose is to characterize a process to
be used in a next %eneratlon detectors of ultra-high energy
cosmic rays (10%eV).



SLAC Experiment

P.W. GORHAM ET AL., PHYS. REV. D 78, 032007 (2008)

Experimental apparatus
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FIG. 6: Average microwave emission amplitude from 100 beam shots
taken near shower-maximum in the 2004 SLAC T471 experirment,
using a broadband antenna that was polarized along the electron
beam axis, and was thus sensitive to partially coherent radiation di-
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FIG. 7: A plor similar rto the previowus figure, but riow LSING d Cross-
polarized antenrna which was insensitive to radiation polarized with
the electron beam. The dynamic range of the systerm was now ini-
proved so thar the noise level is determined by thermal noise, and the
detecred microwave emission extends out ro 60 ns or more, with an
exponential decay time constant of abowt 7 ns. The uwpper and lower
dashed red horizorntal lines indicate the minirmum detectable inter-
siry, as given by eguarion |8| for rhe single-shor case, and the 100-
shor average. The diagonal dor-dash lines are the rwo extreme-case
estimares jor MBR emission: rthe upper case jor no ner collisional
suppression arnd the lower case for maximal collisional suppression
of the emission, both for the case where the electron thermalization
rirne constant is rthe source of the 7 ns exponential decay observed.




AMY Experimental apparatus:

The anechoic Faraday chamber
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Three modules:

*1-3 length 1,5 m

2 length 1 m

Measured shielding for outside
radiation above 4 GHz better than 85
dB, it reduces down to 40 dB at 1
GHz.




AMY Experimental apparatus:

Instrumentation
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HF *Range: 0.25-26.5 GHz
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= Oscilloscope LECROY SDA 830Zi-A: 4 ch, 20 GHz real time bandwidth, 40 GS/s
= Spectrum analyzer ROHDE&SCHWARZ SFSV30: 9-30 kHz, 40 MHz bandwidth
= Microwave signal generator ROHDE&SCHWARZ SMF100A: 100 KHz to 22 GHz.

GRAZIE a Dr.Notaro (LeCroy) e ad Alessandro Corvaglia



The key point of the measurement

- Above = 20 MeV the electrons in air emit cherenkov radiation

BTF - 510 MeV (SLAC — 28 GeV)

very strong electric field from the beam at the 6Hz frequencies (bkg)

= MBR should be produced by secondary electrons antenna
target .

maximize the energy deposit
— - H )

by producing an air shower

the cherenkov radiation is polarized in the plane defined by the poynting vector and the electron
velocity

Antenna polarization

orthogonal to this plane (CVOSS-PO\,) minimize cherenkov

parallel to this plane (CO—PO\) maximize cherenkov

as suggested in the P.Gorham et al. paper



First test beam nov21l-dec04 2011

at BTF of INFN LNF
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THE BTF AREA @ INFN FRASCATI LAB

ANECHOIC CHAMBER AND TARGET VIEW

5 antennas positions:
e 2 at the corners (A, B)
« 2 on the sides (C, D)
* 1 on the top (T)

notice: i
- only two days of runs with the target (ZghzTV;.f,?,gijrlnnj,;e}ngitr at 10
= 13000 triggers

problems with the radiation safety rules of LNF cm)

- runs in parallel to the normal DAFNE



BEAM SIGNAL

Beam signal given by an integrating Lo
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Typical analysis steps
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ANTENNA SIGNAL

HORN

Range starting from 1.7 GHz

Signal much more clean

Anechoic chamber shield up to 1 GHz around 40 dB
But pattern sometimes very puzzling
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| Sc4:Charge {Charge>0 && Sc2>1.2} |

I ><106

* Power signal shows a  3,t

quadratic dependence o

from the beam 2001

intensity . o

*This trend does not ::

depend on the 120,
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The fit is with a 2nd order Polinomial.
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The fit is with a 2nd order Polinomial



the quadratic scaling observed over the full

Power in the full bandwidth as a function
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Average signal Vs Frequency
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The radiation outside the LINAC peaks becomes observable when the current is higher



Second test Beam

May 14 - 27 (2012)
THE MAIN LIMITATIONS TO OVERCOME HAVE BEEN
CLEAR ONLY AFTER THE FIRST TEST BEAM.

¢ Remote control of the interaction target (LECCE)

® |[mprove the overall geometrical precision of the camera
(antenna positioning and orientation of the polarization
plane) (ROMA2)

® |ncrease the beam current by a factor 10 — radiation
protection service

® 3 ns bunches

THANKS TO Pino FIORE (Mechanical service)



Remote control of the interaction target (technically

designed and built in Lecce (Pino Fiore), cooperation with

Dr. Martina Bohacova (stay at Lecce in 2012-INFN-FAI

GEANT4 simulation
of the Energy

Deposit distribution
iInside the chamber.

Without interaction
target and
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Interaction target 1 i
in the BTF area :

* 6 radiation lengths selectable
* compressed air system




5 days of dedicated runs + Higher intensity + 3ns bunch
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The beam intensity was stably between 10° and 5 10° electrons/bunch
(notice: radiation safety problems at the previous test when running
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Few runs a factor 10 higher current



Presence of Reflections inside the chamber ?
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Signhal Vs Target Tickness
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Third Test Beam (December 2012)
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Third Test Beam (December 2012) -analyzing the 2" peak

2nd peak?
- /
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Third Test Beam (December 2012) -Intensity of the 2" peak
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Third Test Beam (December 2012) -Possible sources of

reflections.

Several sources of reflections tested inside the chamber and due to cabling,
electronics and antenna supports
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Third Test Beam (December 2012) -Signal in the full

bandwidth and out of the peaks.
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CONCLUSIONS

> The experiment has ended in 2012- a further test (1.5 nsec maybe in
2014)

> Analysis work ongoing.

» Papers up to now:
® The Air Microwave Yield (AMY) experiment to measure the GHz
emission from air shower plasmas.- EPJ Web of Conferences 53,
08011 (2013)

® Air Microwave Yield (AMY): An experiment for measuring the GHz
emission from air shower plasma- Il nuovo Cimento C-2013- Issue
1 (pagg 134-138)

®* The AMY experiment to measure GHz radiation for Ultra-High
Energy Cosmic Ray detection- J. of Phys.: Conf. Ser. 409 (2013)
012082-012085

°* AMY (Air Microwave Yield) Laboratory Measurement of the GHz
Emission from Air Showers — ICRC 2013



Three test beam performed: November — December 2011/May 2011/December
2012

With the second/third very good run conditions (radiations, 3ns, >10'°, ...) even if
no dedicated beam.

We should have detected the MBR if it has the intensity reported by P.Gorham et
al. Do we have detected it? Difficult to say, analysis and simulation are underway

We have to understand what is the configuration maximizing the sensitivity to
MBR (= minimizing Cherenkov)

A double peak structure evident in the signals more evident with
bunches at 3 ns and 1.5 nsec not understood yet:

- Second peak unpolarized

- Several sources of reflections checked.




BACKUP



SPECTRUM ANALYSIS
FFT

FFT of the row signal row signal
FFT of the filtered signal filtered signal
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SIMULATION

0.35 ns Micro bunches “train”

froquency Hz FFT_Oscilt

0.26

.2

6.8

Relativistic Approach 61
E = E B = B
E.:. = ~v(E; — 8B3) B; = v(B: + BE;3) e

IIIlIIIIIIIIIIlIIl]lII1I|I1I|

fl-:r;l = v(E3 + 8B3) H_Fl = y(Bs — BE;)

L _"r'|.‘ _: _!' . i YR .-I L, o e 1 . T
a 4 BEOF M 1@ W W 98 A

Simulation of the electric and
magnetic filed produced by the

beam near the antenna
* The charge are propagated along the - Understanding the radiation
beam assuming constant speed and using emitted by the beam

time step of 6.cx10® s * Background for MBR
* The propagation time of the signal from the « Benchmark to understand the

bunch to the antenna is take into account detector

* E and B calculated each 6.6x1013 s in the
lab ref. syst.



OSCILLOSCOPE SIGNALS

e Runld: 201112040620 .
Event Id: 43160

e about 300 runs

e most of the time et-beam

e events/run = 1000

* event trigger with signal
from pickup coill
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