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One-dimensional spin chain

Ferromagnet




Example: Ising model
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# Energy gap:
A~ J‘g — gc‘ZV

# Correlation length:

5_1 ~ A‘g — gc‘y

# Critical point:

A—0 &— o0

( Ising model: z=v=1)




Quantum critical region




Other Examples

@ Other spin chain models
¢ O(N) (quantum rotor) models

«# Hubbard models

@ Fermi liquids

@ Bose-Einstein condensates




Experimental relevance

= Insulators with magnetic properties

= Strange metals:

* Heavy fermion compounds
* Materials with high Tc superconductivity

Experiments can be made only at
finite temperature

What is the signature of the quantum critical point?




Equilibration/mean free time

Quantum critical:

T h/kBT

Non-critical:
T~ (B/kpT)el?/FrT

Large separation of time scales: classical relaxation
(collisions of quasiparticles)
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Equilibration/mean free time

Resistivity in critical region:

dme?n 4me?n h




Good agreement with experiments

Orange:
Resistivity Linear
in Temperature

0 1 2

[Coleman, Schofield Nature 433, 226]




Quantum Critical Points

< Continuum limit: quantum field theory

+ Scaling symmetry at the critical point:

t — N°t, x* — A&’

¥ Free field example: “Lifshitz theory”

1
s= [arate [2@07 - (@07
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Connections to High Energy Physics

@ There are now many examples of gravity duals
with scale invariance

@ Canonical example: conformal field theories i.e.
relativistic quantum critical points

@ Time scales in strongly coupled gauge theories
with gravity duals

Hydrodynamic description very successful!




From gauge/gravity duality models, we expect a universal

hydrodynamic description of scale-invariant theories

This was already argued by condensed matter physicists,

but not developed 1n the same way as for relativistic theories

[Sachdev & Ye]

We mitiate the formulation of hydrodynamics of quantum

critical points at finite temperature




Hydrodynamics in QCP

d Graphene: [Fritz, Schmalian, Muller, Sachdev]
z=1 (relativistic fermions)
Hydrodynamic Drude model
d Fermions at unitarity: [Cao etal.; Son & Wingate]

z=2 (non-relativistic conformal invariance)

Elliptic flow with low viscosity




Hydrodynamics




Time-like Killing vector: defines rest frame of the fluid




Time derivatives:
Space derivatives:

Vip = P*9,0,¢

Example: z=2 Lifshitz scalar

1
L = 5( Maucb)z

K

4 (PMVaMaV Cb)Q




Symmetry generators

Time and space translations:
| L _pv
P =u"0,, P, =P, 0,

Anisotropic dilatations:

D = zaf;“u”PH — .:C”LP/JJL

D, Ply=zPl | [D,P/]=P;

_ .



Ward i1dentities

Conservation equations: 8MT'M — O

“Trace” of energy-momentum tensor:

2L utu” =1, PP =0

Lorentz symmetry is broken:

T #+=T7F




Constitutive relations

Ideal energy-momentum tensor:

T =(g + p)uru” + pnt”

Scale symmetry and equation of state:

1, uu” =1, P" =0

1_ .




Temperature dependence

Scale symmetry: zE — dp

Thermodynamic relations:

Op

e+p=1s S = 37

Temperature dependence:




Constitutive relations

Energy-momentum tensor:

TH =(e + p)uru” 4 pn™”

Landau frame condition:

THY £ TV




Second law of thermodynamics

8158 — /ddaz‘ﬁts > 0

Local form: 8}&3” > ()

O ™y, =)

Entropy current: st = sut




Dissipative terms

Symmetric terms:

ng””) = —nP“aP””BAa,@ - %P“”ﬁauQ
2 g
A@/@ — 28(au5) — E @5((90’& )

dus" >0 =n=>0 >0




Dissipative terms
Anti-symmetric terms: 8”8”’ > ()

T = —a“mﬁ(ﬁ[aum — u[au’oﬁpum)

Vo
T P75, > 0

Rotational invariance:




Dissipative terms

Temperature dependence fixed by scaling:

New transport coefficient:

d Dissipation due to non-inertial motion of the fluid

d Distinguishes Lifshitz from relativistic theories




Application:
Drude model of strange metal




Non-relativistic limit

2

C — OO szpcz—p%—l—U

Ideal equations of motion: gl = dp

O p + &;(pvi) = ()
o:U + 0; (U’Ui) + p@wi = (
O (pv') + dj(pr’v') + 0'p =0




Drude model: electron fluid moving though medium
@ Force by external electric field

@ Drag force

i
J



Ideal equations of motion:

Orp+ 0;(pv") = 0

O:U + 0; (Uv") + pojv’ :

O (pv") + 0 (pv?v") + 0'p
pE'l— v’




Scaling dimensions:
T =2 [l=z-1
pl=[Ul=2+d [pl=d+2-2z
N = z2|———> \~kpT/h

Conductivity:

JZ) — ,UZ 2 _E’Z
PU =X

Resistivity linear in T independent of z and d




Dissipative terms

0 U + 0; (U’Ui) + p@wi

= S0l + 50 VA

2 k2 J
Shear: 73 = 20;05— (2/d)0;; 00"

( )

Inear acceleration:

Dt — 8{; _|_’U?:8@j

oriolis acceleration:

Wij = 28-[?;’03'




Corrections to the conductivity

4 A
p 1 2 Qo953
7erle) =3 {1 PAE, (n5 B 4 W%Eﬂﬂ)]

Estimate for F., = Eoy / L
2 —3
O~ Oz, 1g-11 (m) (Z) Q—/’O(an)z

0
o M4 K

(0Eo0) = 5 ffl/é—l
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Future directions

@ Transport coefficients beyond first order
@ Additional conserved currents

@ Superfluids with Lifshitz scaling

@ Fluids in a curved space: Weyl anomaly?

& Anomalous currents




Grazie!




