

Achim Denig, JGU Mainz PRISMA Cluster of Excellence

Puzzles in Low-Energy Precision Physics The quest for future experimental investigation

Juliet and Paolo Fest LNF Frascati 30 May 2013

The Success of the Year 2012

Global Effort → Global Sugger Result July 2012 Higgs discovery → Last particle of the Standard Model discovered

Puzzles at low Energies

- 1) Anomalous magnetic moment of the muon (g-2)_u
 - \rightarrow discrepancy btw. SM prediction and direct measurement (3 ... 4 σ)

2) Electroweak mixing angle $\sin^2\theta_W$ \rightarrow 3 σ discrepancy btw. LEP and SLC results

Furthermore: Proton Radius Puzzle

..... Flavour Physics (\rightarrow next talk by Giancarlo)

The Anomalous Magnetic Moment of the Muon (g-2)_μ

Muon Anomalous Magnetic Moment: $(g-2)_{\mu}$

Hadronic Cross Section and $(g-2)_{\mu}$

Hadronic Vacuum Polarisation

Hadronic cross section related to hadronic vacuum polarization contribution to $(g-2)_{\mu}$

ISR Method for Measuring R at KLOE

Supersymmetry and $(g-2)_{\mu}$?

Supersymmetry and $(g-2)_{\mu}$?

A Solution for the $(g-2)_{\mu}$ Puzzle? Dark Photons?

Dark Photon Search

New massive force carrier of extra U(1)_d gauge group; predicted in almost all string compactifications

Search for the O(GeV/c²) mass scale in a world-wide effort

- Could explain large number of astrophysical anomalies Arkani-Hamed et al. (2009)
- > Could explain presently seen **deviation of 3.6** σ **between (g-2)**_{μ} Standard Model prediction and direct (g-2)_{μ} measurement
- Could eventually explain the proton radius puzzle

The $(g-2)_{\mu}$ *Parameter Range*

A1 Spectrometers@Mainz

Bjorken, Essig, Schuster, Toro (2009) Low-energy, high-intensity accelerators are ideally suited for Dark Photon searches

Results from A1@MAMI Pilot Run (2010)

MAMI Predictions for 2012/13 Runs

MESA Accelerator

Mainz Energy-Recovering Superconducting Accelerator

E_{max} = 200 MeV I_{max} = 10 mA

2 Modes:

- Internal Gas Target (ERL mode)
- Extracted Beam (Non-ERL mode)

Accelerator MESA (ERL mode)

Energy-Recovering (ERL) mode: 105 MeV beam energy @ 10 mA

A Precision

Measurement

of $sin^2\Theta_W$ at MESA

 $sin^2\theta_W$ within the Standard Model and beyond

Probably <u>the</u> key parameter of the SM: The Electroweak mixing angle θ_w

$$\sin^2 \Theta_{\mathbf{W}} = (\mathbf{e}/\mathbf{g})^2 = 1 - (\mathbf{M}_{\mathbf{W}}/\mathbf{M}_{\mathbf{Z}})^2$$

Incorporates: SU(2)_LxU(1)_Y + Higgs Mechanism+ Renormalizability

EW corrections strongly correlated with masses of top quark, Higgs, New Physics!

EW Precision Physics after Higgs Discovery

- Low Energy experiments (e-e-, Neutrino scattering, APV)

A Low- Q^2 Measurement of $sin^2\theta_W$ at MESA

Scattering of longitudinally polarized electrons on protons

- → Z boson exchange in electron-proton scattering introduces parity-violating effect
- → Measure parity-violating Left-Right cross section asymmetry A_{LR}

$$A_{LR} = \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

$$Q_W = 1 - 4\sin^2\theta_W(\mu)$$
hadron structure
$$\frac{\text{MESA goal (extracted beam mode):}}{\text{Measure parity-violating Left-Right}}$$
asymmetry A_{LR} of 20 x 10⁻⁹ with 1.8% precision

MESA contribution to $sin^2\theta_W$

Why low beam energies?

→ Dramatically reduced hadronic uncertainties from γZ box diagrams (QWEAK 1.2 GeV)
 → At low energies there is a significantly enhanced sensitivity to resolve New Physics

MESA: $\Delta \sin^2 \theta_{W} = 4 \times 10^{-4}$

Possible Scenarios 2017+

Scenario: Metastable universe \rightarrow No Physics beyond the SM

Possible Scenarios 2017+

Scenario:

Conclusions

Conclusions

PRECISION FRONTIER at low energies: Complementary program in the LHC era Puzzles? **New Physics?**

Many thanks for the leadership!

Happy Birthday Juliet and Paolo!