LUCIFER: Low background Underground Cryogenic Installation For Elusive Rates

Luca Pattavina

luca.pattavina@lngs.infn.it

13th June 2013, LNGS

Outline

- Introduction on double-beta decay (DBD) physics

- Bolometers as a probe for DBD physics
 - the technique
 - the limitation (background sources)
 - the potential
- Particle discrimination with scintillating bolometers
- The LUCIFER project:
 - ZnMoO₄
 - ZnSe
 - R&D prototypes

Double-Beta Decay

It is a very rare nuclear decay: $(A,Z) \rightarrow (A, Z+2)+2e^{-}+(2\overline{\nu}_e)$

2νββ

- Second order SM weak process
- Rarest decay ever observed: $T_{\frac{1}{2}} \sim 10^{19} 10^{21}$ y

0νββ

- Not allowed by the Standard Model ($\Delta L=2$)
- Decay never observed: $T_{\nu_2} > 10^{22} 10^{25}$ y
- Possible only if neutrinos are Majorana particles

Indirect neutrino mass measurement

Experimental signature

Measurement of the kinetic energy of the decay products (~MeV).

It is a monochromatic peak at the Q-value of the nuclear transition.

<u>Calorimetry</u>

Solid-state device Bolometer Gas Detector

- * High efficiency
- * Good energy resolution
- * Large mass source

Experimental signature

Measurement of the kinetic energy of the decay products (~MeV).

It is a monochromatic peak at the Q-value of the nuclear transition.

Ovßß Sensitivity

 $\mathbf{S}_{\mathbf{0v}}$: half-life corresponding to the minimum number of detectable signals above background at a given C.L.

F.Alessandria et al., arXiv:1109.0494

The bolometric technique

fully-active detector

Almost all the deposited energy is converted into phonons which induce a measurable temperature rise

The heat capacity of the crystal must be very small (-> low Temperature ~10 mK)

<u>Absorber</u>

- M ~ 0.45 kg
- $C \sim 10^{-10} J/K$
- $-\Delta T/\Delta E \sim 500 \mu K/MeV$

<u>Sensor</u>

- $-R = R_0 \exp[(T_0/T)^{1/2}]$
- R \sim 100 MQ
- $\Delta R/\Delta E \sim 3 M\Omega/MeV$

Ovßß candidate isotopes

- -> the "best-isotope" must have:
 - * high Q-value
 - * high a.i.

requirements:

 $S_{0\nu} \propto a.i.\sqrt{rac{M\cdot t}{B\cdot \Lambda E}}$

- high Q-value -> better if > 3 MeV
- high a.i. -> the highest possible but...
- easy/cheap enrichment -> reduce radioactive contaminations
- solid -> bolometers have crystal structures

Ovßß candidate isotopes

- -> the "best-isotope" must have:
 - * high Q-value
 - * high a.i.

Environmental radioactivity

Isotopic Abundance [atomic %]

- high Q-value -> better if > 3 MeV
- high a.i. -> the highest possible but...
- easy/cheap enrichment -> reduce radioactive contaminations
- solid -> bolometers have crystal structures

Bkg sources in bolometric DBD experiments

Since bolometers are **fully-active detectors** and are sensitive to all radiation types, various sources can limit the experimental sensitivity

Neutrons => - neutron activation: (n, γ) reactions * appropriate shields are needed Muons => - energy deposit in the ROI * underground installation & granularity & veto $\beta/\gamma s => -$ natural radioactivity (²³⁸U & ²³²Th) * isotope choice and material selection degraded $\alpha s => - \alpha s$ coming out from detector surfaces * surface cleaning and particle discrimination

CUORICINO experiment

High energy $\beta/\gamma s$ background

Background can be induced by contaminations of ^{238}U & ^{232}Th decay products. Elements with $Q_{value} \sim Q_{DBD}$:

Near contaminations (crystal or Cu structure): => rejection because of pile-up - ²¹⁴Bi-²¹⁴Po : Q_{value} 3.27 MeV with ²¹⁴Po and slow thermal signal => delayed coincidence with $^{214}Bi \alpha$ - ²¹⁰Tl-²¹⁰Po : Q_{value} 5.49 MeV => delayed coincidence with $^{212}Bi \alpha$ - ²⁰⁸Tl-²⁰⁸Pb : Q_{value} 5.00 MeV => proper shields & material Far contaminations (external) are dangerous selection 238U 232Th ^{212}Bi t = 60.6 m 214 Bi t = 19.9 m b+g 64% a 36% a .02% b+g 99.98% Q= 6207 keV Q= 2254 keV Q= 5617 keV O= 3272 keV 212 Po t = 299 ns 208 Tl t = 3.05 m ²¹⁰Tl t = 1.3 m 214 Po t = 0.163 ms b+g 100% a 100% a 100% b+g 100% Q= 5489 keV O= 7833 keV Q= 8954 keV Q= 5001 keV 210 Po t = 22.3 y ²⁰⁸ Po stable

α surface contaminations

M. Clemenza et al., Eur. Phys. J. C **71**, 1805 (2011)

Scintillating bolometers

When a **bolometer is an efficient scintillator** at low temperature, a small but significant fraction of the <u>deposited</u> <u>energy is converted into scintillation photons</u> while the remaining dominant part is detected through the heat channel.

The <u>simultaneous read-out</u> of **light** and **thermal** signals allows to discriminate the α background thanks to the scintillation yield different from β particles.

QF: is defined as the ratio of the signal amplitudes induced by an α and an β/γ of the same energy.

Light detectors (LD)

Light signal:

=> few keV/MeV (depending on the crystal)
=> is isotropic

Light detector:

- => quantum efficiency
 - => extremely good energy resolution

16

- => intrinsic radio-purity
- => must work @ low T
- => energy threshold

Bolometric LD

- HP-Ge disk (3-5 cm diameter, 0.1-1 mm thick)
- SiO_2 coating for darkening the surface => reduce light reflections
- Calibration with ⁵⁵Fe X-rays @ 5.9 keV and 6.5 keV
 - Energy resolution: ~100 eV
 - Energy threshold: ~10 eV

LUCIFER

Low-background Underground Cryogenics Installation For Elusive Rates

LUCIFER is funded by an Advanced Grant ERC: $3.3M \in$

- First prototype array of enriched scintillating bolometers
- LUCIFER will search DBD0v in: $\rm Zn^{82}Se$ or $\rm Zn^{100}MoO_4$ or $^{116}CdWO_4$ crystals
- Total isotope mass: ~10 kg, ~36 detectors
- Light Detectors: HPGe bolometers

	Q-value [keV]	Useful material	LY _{β/γ} [keV/MeV]	QF_{α}	
ZnSe	2995	56 %	6.4	4.2	
ZnMoO ₄	3034	44 %	1.5	0.2	
CdWO ₄	2809	32%	17.6	0.19	

LUCIFER

Low-background Underground Cryogenics Installation For Elusive Rates

LUCIFER is funded by an Advanced Grant ERC: 3.3M€

- First prototype array of enriched scintillating bolometers
- LUCIFER will search DBD0v in: $\rm Zn^{82}Se$ or $\rm Zn^{100}MoO_4$ or $^{116}CdWO_4$ crystals
- Total isotope mass: ~10 kg, ~36 detectors
- Light Detectors: HPGe bolometers

	Q-value [keV]	Useful material	LY _{β/γ} [keV/MeV]	\mathbf{QF}_{α}
ZnSe	2995	56 %	6.4	4.2
ZnMoO ₄	3034	44%	1.5	0.2
G 1550	0000	200	17.0	0 1 0
	2003	520	17.0	0.19

¹¹³Cd:
high neutron XS
(n-inelastic scattering, ¹¹³Cd(n,γ), ...)
natural beta emitter
(Q-value: 316 keV)

The underground facility

Hall C: CUORE & LUCIPER R&D facility

Laboratori Nazionali del Gran Sasso INFN, Italy

Experimental location:

- Average depth \sim 3650 m w.e.
- Muon flux ~ 2.6×10⁻⁸ $\mu/s/cm^2$
- Neutrons < 10 MeV: $4*10^{-6}$ n/s/cm²
- Gamma < 3 MeV: 0.73 $\gamma/s/cm^2$

$ZnMOO_4$

ZnMoO₄ performance

By means of the good energy resolution and the excellent background discrimination, $\rm ZnMoO_4$ crystals are suited for DBD search

FWHM @ 2615 keV: 6.3 keV

Chain	Nuclide	Activity [µBq/kg]
²³² Th	²³² Th	<8
	²²⁸ Th	<6
²³⁸ U	²³⁸ U	<6
	²³⁴ U	<11
	²³⁰ Th	<6
	²²⁶ Ra	27 ± 6
	²¹⁰ Po	700 ± 30

CUORE TeO₂ crystals ready-to-use: $^{238}U < 3.7 \mu Bq/kg$ 232 Th < 3.7 μ Bq/kg

C. Arnaboldi et al., J. Cryst. Growth 312 (2010) 2999

ZnMoO₄: exercise

Exercise: - Array of 40 Zn¹⁰⁰MoO₄ bolometers enriched @ 90% level

- 60 mm x 60 mm crystals
- Background source: U & Th in Cu structure and in crystals
- DBD2v half-life of 100 Mo: 7.1x10¹⁸ y (~5 mHz per crystal)

A. Barabash et al., Phys. Rev. C 81 (2011)

Assumptions: - Neutrons in ROI < 10⁻⁵ c/keV/kg/y

- Muons (anti-coincidence) < 10⁻⁴ c/keV/kg/y
- Pile-up window: 5.5 ms (conservative)

Source	Position	Background [c/(keV kg y)]
U chain	Crystals bulk	$<1.16 \pm 0.1 \cdot 10^{-5}$
Th chain	Crystals bulk	<2.18 ± 0.04 \cdot 10^{-4}
2vDBD pile-up	Crystals bulk	1.96 ± 0.36 \cdot 10^{-3}
U + Th chains	Cu frame bulk*	$<2.40 \pm 0.04 \cdot 10^{-4}$
U + Th chains	Cu shield bulk*	$<1.40 \pm 0.05 \cdot 10^{-4}$

Ultimate background: pile-up with DBD2v decay

* G. Heusser et al., Radioactivity in the Environment, vol. 8, Elsevier, 2006, p. 495.

²³²Th: 19 µBq/kq ²³⁸U: 16 uBa/ka

For next generation experiments need faster signal development

ZnSe

Candidate: ⁸²Se

Particle discrimination with ZnSe crystals

Excellent particle discrimination:

using **Heat signal shape** even @ low energy

Calibration with α , β/γ sources

Calibration with $\alpha,~\beta/\gamma$ sources

ZnSe background

Energy [keVee]

ZnSe background

LUCIFER

Low-background Underground Cryogenics

Installation For Elusive Rates

Cano₄

2009

European Research Council erc

LUCIFER is funded by an Advanced Grant ERC: 3.3M€

 QF_{α}

4.2

0.2

0.19

⁸²Se (0.92±0.07)x10^{20} y ^{100}Mo (7.1±0.4)x10^{18} y

A. Barabash et al., Phys. Rev. C 81 (2011)

56%

44%

JZ 0

 $LY_{\beta/\gamma}$

[keV/MeV]

6.4

1.5

11.0

- 1cm Roman Pb A (²¹⁰Pb) < 4 mBq/Kg
- External shield:
- 20 cm Pb
- 10 cm Borated polyethylene
- Nitrogen flushing to avoid Rn contamination.

Winner:

- no DBD2v bkg

Istituto Nazionale di Fisica Nucleare

- more useful material
- high LY

LUCIFER R&D

We tested our LD with some interesting compounds:

- PbWO₄
- TeO₂
- Li₂MoO₄
- ...

PWO crystals

- PbWO₄ : -> Small LY (~ 20 ph/MeV @ 300K) -> Intrinsic radiopurity (low ²³⁸U and ²³²Th internal contaminations, but **high**²¹⁰**Pb** and ¹⁸⁰W) -> can be grown with large size
- WHY : -> 204 Pb is considered to be the heaviest stable isotope (study of Pb isotopes stability) -> sci-bolo is the only possible way to study α decay of ²⁰⁴Pb, which has a rather small Q-value (< 2.6 MeV) -> previous measurement with nuclear emulsions (1958) -> good target for Heavy WIMPS interaction (Pb and W)!

PWO measurement

	LlV	e 'l'ır	ne :	586	h		En	ergy [keV]
	0	1000	2000	3000	4000	5000	6000	7000
[/	8					<u></u>		

TeO₂ Čerenkov

TeO₂ CUORE crystals do not scintillate but: βs with energy greater than 50 keV can produce Čerenkov light,

unlike αs .

T. Tabarelli de Fatis Eur. Phys. J. C 65 (2010) 359

- Better understanding of the light production/collection is needed
 particle discrimination is not optimized (need more light)
- R&D on next generation LD is on going: KID and Neganov-Luke effect

Conclusions

* Scintillating bolometers are the next generation detectors for rare events searches (DBD, rare decays, ...)

* The scintillation light is not the only channel for particle discrimination => PSA on Heat channel allows us to reduce the background without increasing the # of detectors

* ZnSe is a promising compound for DBD and DM searches, nevertheless R&D of LDs is needed

* ZnSe (and ZnMoO4) allows to reach a background level of ${\sim}10^{-3}~{\rm c/keV/kg/y}$ (at least)

* A bright future is ahead...

