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The Sagnac effect and the Ring-Laser
G in Wettzell

GINGER (Gyroscope IN GEneral Relativity), LenseThirring
effect at 1 %

preliminary results of the first installation inside LNGS
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The Sagnac Effect

- two beams conter-propagating inside a ring of radius
R complete the path at different time if the ring is rotating with

angular velocity Q

47 R2Q)
At =T

(1)




Devices based on the Sagnac Effect

o fiber optics
@ passive cavity

@ active cavity (ring-laser, gyro-laser)

Several instruments have been developed for different purpose, in
general inertial navigation (air-plane, submarine...) and more
recently for geophysics study.

NOTE: the response is not affected by longitudinal vibrations since
moving parts are not present
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In general FOGs have applications when 10™#rad/s is required,
ring-lasers have higher sensitivity and accuracy

Sagnac Interferometer / Fiber Optic Gyroscope (FOG)

40 meter Sagnac loop
polarization controller
loop

Laser

M.

Coupler
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The Ring-Laser
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When the cavity rotates with frequency 2, the bit note, dfs,gnac:
6f$agnac =K Qn

where n is the area vector and K is scale factor of the instrument,
K = %A )\ is the wavelength, and A and P area and perimeter.
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High Sensitivity RinglLaser and G-Wettzell

There are few large frame(few m side) ring-lasers, in NewZealand,
US and Germany

Geodex n Geophysics

G in Wettzel is a monolithic device, a huge 'unique’ zerodur
block, with mirrors optically contacted.



The Shot Noise of the Ringlaser
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U. Schreiber et al., PRL 107,

173904 (2011), highlighted and reported from Science, Nature
Photonics News and Views, local newspapers in Germany and ltaly

as well
The data of G are combined with VLBI data (short term formal

error reduced)
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Limitation of the measurement
A S sme=EKal 1+ K, JQ+A fo+5 f o
Ky resonator part: depends from resonator geometry | — Eﬂ=% 1458 %]]

K, atomic part: contribution of the active madium
(fluctuations of gain. pressure, gas temperature._..)

A f., null shift: due to amplitude non-reciprocities

A fn_-.- backscattering: coupling of beams due to mirmor impurities
or plasma inhomogeneities

Q is the scalar product of whole vector € with the normal n of the
ring area
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Problems connected with the non linearity of the Laser:
BackScattering
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we are developing Kalman filters to offline subtract backscattering
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GINGER, Gyroscopes IN GEneral Relativity
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In Collaboration with U. Schreiber (TUM), H. Igel (LMU) and JP

Wells (ChristChurch NZ):
Geodesy-Geophysics-Fundamental Physics
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in general, the light must follow:

goodt? + g dr® + gpod0? + gssdd? + 2g0sdtde = 0;

5T:T+—T_z27{g0¢d¢)7é0
800

at first approximation

H (.d2 R2
8og = (QJE

Q
— RZ% - 2,1;:"\’Z)sin2 0,800 =12 sin? 6

c2
where:
M J
p=G— ~44x10mand;j = G= ~1.75 x 102m?
c c
Q = angular velocity of ther Earth

w = angular velocity of the instrument
0 = colatitude
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in a ring-laser the measured quantity is:

f = 4510 — 24 sin 0y + 5% (2 cos(8) i, + sin(0) dp)]
@ pure Sagnac term (Earth Angular Velocity)
o Geodetic (de Sitter)

e Gravitomagnetic Term (LenseThirring)



@ The beat note has 3 terms: the Sagnac one, the de Sitter
(Geodetic term) and the Gravitomagnetic one (LenseThirring)

@ The Earth angular velocity is measured with very high
accuracy by VLBI, which measure the Earth rotation with
respect to the fixed stars
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GINGER would be the first test (not considering the gravitational
redshift measurements) of general relativity in one experiment on
ground using light as a probe




What it is necessary to do in order to test GR

@ (2 is a vector, so at least 3 independent rings are necessary, we
propose 6 parallel ring two by two, in order to have
redundancy

@ Underground Location, in order to be far away from the Earth
crust, which is perturbed by atmospheric changes (pressure,
wind, rain....)

@ increase the sensitivity and the time of integration: larger
rings (from 4 m to 6 — 10 m)

accuracy 1 in 1010
Sagnac term

, necessary in order to cancel out the pure
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The ring-laser has a mature technique, G Wettzell is a factor 4 far
from what is necessary, but:

o tri-axial device
@ increase as much as possible the integration time

@ relative orientation of the planes must be monitored with nrad
accuracy

@ absolute calibration of the instrument
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The heterolithic ring-laser

Necessary to make the "heterolithic’ structure as stable as the
monolithic one G using control strategy. The new prototype GP2
in Pisa will be dedicated to this purpose and to investigate the
systematics of the laser




the LNGS installation

Our first prototype G-Pisa has been moved to LNGS last spring.
The aim of installation is qualify LNGS for GINGER

o first installation in Hall B, data taking ended in May

@ restart data taking as soon as it will be possible to move it
inside the ex Warp green cage

@ in 2014 rearrange G-Pisa in order to form a 4m side ring-laser

in 2015 we should be able to say if LNGS is a good location
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G-Pisa at LNGS (GINGERino)







=)

Cz

Main Characteristics

* Qof the cavity around 10! (this depends on the mirrors, could be
higher)

¢ PSD(noise floor) 4-5 nrad/s/sqrt(Hz) (sometime better...)

+ Two seismometers are co-located (3 axis each)

* One nano-tiltmeter (2 axis)

*  Few environmental monitors: temperature, pressure and humidity

* Below 10mHz the instrument is backscattering dominated

Sagnac PowerSpectrum (blue: vertical compenent)

10* 102 0
PowerSpectrum (radis/sqa(Hz)
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Angular Velocity (radfs/sqri(Hz))

Typical PSD in S.Piero (Sunday
February 17) and at LNGS

Sagnac, Power Spectrum, February 17 Sunday in S.Piero
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Some About TiltMeters
nhrad

Environmental data
Stating time April 19, 0:00 UTC
The Tiltmeter on top of the monument

The Monument was not attached to the
floor
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Angle (mrad)

Tiltmeter data (2 channels)

3
Time (days)
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Tiltmeter (channel 1) Night/Day
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Amplitude (rad/sqr(Hz))

Power Spectrum of the titmeter (2 channels)
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dotted curves are expected polar mations (Gebauer)
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Long Term TiltMeter stability
working hours and big jumps have
been eliminated

A 6,(1)

ﬁﬁ%”d’ﬁi%ﬁii}hyms‘i*'ﬁ“ﬁ‘iflTv

Tau

1

Allan Deviation,

2

Sigmo

£.00e+01 2,26e-05

2.4Ge+05 3.60e—04

= 107

A

108 1
Averaging Time, T,

I
Seconds

Cz
z)




‘5

TlltMeter/Temperature-Monitors

angle (mrad)

srature (Clesius-average subtracted)

o

22

21

20

x 107

TiltmetersiTemperature

s \ N ) |
0 5 10 15 20 55 -
time (Hours)

T . .
andard probe
large door open? tmeter probe |
| ———
L N X ;
5 10 15 0 %

30



‘5

Angle (mrad)

Frequency (Hz, mean subt.)
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A detail

Is the monument moving with the tiltmeter?
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Seismometer STS-2
Streckeisen

* ST-2 co-located with G-Pisa, on top of the
granite table

* Confrontation with the USGS New Low Noise
Model
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VELOCITY-1

PSD (10log,, m” 52 / Hz)
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PSD (10log,, m” 52/ Hz)

G. Saccorotti INGV-Pisa
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PSD (10 |0910 m’s?2/ Hz)

G. Saccorotti INGV-Pisa
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Typical PSD on the top surface (VIRGO)
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EarthQuake April 19
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Conclusions

@ G-Pisa has been moved to LNGS with its equipment
@ A first set of data (approx. 1 month) has been recorded

@ The first set of data shows that LNGS is close to the typical
LNM, this gives us a good motivation to go on with the
measurements

@ necessary to enlarge the ring up to 4m side (a factor about 9
improvement in sensitivity)

@ together with our German colleagues we are working to make
GINGER a reality



