

Study of the $\Lambda(1405)$ going to $\Sigma^0 \pi^0$ in AMADEUS

Dr. Kristian Piscicchia*

Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi INFN, Laboratori Nazionali di Frascati

on behalf of the AMADEUS collaboration

Advanced studies in the low-energy QCD in the strangeness sector and possible implications in astrophysics 19-21 June 2013, LNF-INFN Dedicated to the memory of Paul Kienle

Study of Strongly Interacting Matter

 K^{-}

*kristian.piscicchia@lnf.infn.it

 Istituto Nazionale di Fisica Nucleare

INFN

Exclusive $K^-"p'' \rightarrow \Sigma^0 \pi^0$ investigation

 \mathbf{K}^{-}

bound proton in ¹²C and ⁴He

$\Lambda(1405)$ puzzle

A(1405): $(m, \Gamma) = (1405.1^{+1.3}_{-1.0}, 50 \pm 2)$ MeV, I = 0, S = -1, $J^p = 1/2^-$, Status: ****, strong decay into Σπ K⁻ Its nature is being a puzzle for decades: 1) *three quark state*: expected mass ~ 1700 MeV

2) penta quark: more unobserved excited baryons 3) unstable KN bound state in-medium modification of the Λ* mass ? .. (Nucl. Phys. 13 (1987) 1361 / Phys. Rev. C 56 5 (1997) /arXiv:1211.6336v3 (2013))
(see Tucakovic's talk)

4) *two poles*: $(z_1 = 1424^{+7}_{-23} - i 26^{+3}_{-14}; z_1 = 1381^{+18}_{-6} - i 81^{+19}_{-8})$ MeV (Nucl. Phys. A881, 98 (2012))

mainly coupled to KN mainly coupled to $\Sigma\pi$ \rightarrow line-shape depends on production mechanism Line-shape also depends on the decay channel $\frac{d\sigma(\Sigma^{-}\pi^{+})}{dM} \propto \frac{1}{3} \left|T^{0}\right|^{2} + \frac{1}{2} \left|T^{1}\right|^{2} + \frac{2}{\sqrt{6}} Re(T^{0}T^{1*}) \frac{d\sigma(\Sigma^{0}\pi^{0})}{dM} \propto \frac{1}{3} \left|T^{0}\right|^{2}$ |T| [1/MeV] 0.8 0.6 $\frac{d\sigma(\Sigma^+\pi^-)}{dM} \propto \frac{1}{3} \left|T^0\right|^2 + \frac{1}{2} \left|T^1\right|^2 - \frac{2}{\sqrt{6}} Re(T^0T^{1*})\right|$ Im[z] [MeV 1440 1420 1400 Re[z] [MeV] Lower mass: 1385 MeV/c² HADES 500 (see L. Fabietti's talk)

5) One pole : Akaishi, Esmaili, Yamazaki model Phys. Lett. B 686 (2010) 23-28

fit of K^{-4} He absorption at-rest data (D. Riley et al. Phys. Rev. D11 (1975) 3065)

Fig. 6. Detailed differences in $M_{\Sigma\pi}$ spectra among the Hyodo–Weise prediction and the present model predictions.

Investigation of the Λ(1405) produced in K⁻ nuclear absorption in light nuclei ... why?

 Λ^* production in K⁻N reactions: (only chance to observe a possible high mass pole, possibility to test in-medium modification of the Λ^* mass) ...

Taking advantage of low (127 MeV/c) DAΦNE kaons we can investigate both

Stopped K⁻N absorptions & low energy in-flight K⁻N absorptions

"A study of K⁻⁴He \rightarrow ($\Sigma \pm \pi \mp$) + ³H using slow instead of stopping K⁻ would be very useful"

D. Riley, et al. Phys. Rev. D11 (1975) 3065

• decay in $\Sigma^0 \pi^0$: (pure I=0 channel, free from $\Sigma(1385)$!)

Possible thanks to the good performances of KLOE calorimeter!

Low-energy K⁻ hadronic interactions studies with KLOE, an idea of Prof. Paul Kienle

MC simulations show that :

• ~ 0.1 of K⁻ stopped in the DC gas (90% He, 10% C_4H_{10})

~2% of K⁻ stopped in the DC wall (mainly C with Al and H contamination).

 \mathbf{K}^{-}

Possibility to use KLOE materials as an active target

Advantage: good resolution ..

 $\sigma_{pA} = 0.49 \pm 0.01$ MeV/c in DC gas

 $\sigma_{myy} = 18.3 \pm 0.6 \text{ MeV/c}^2$

Disadvantage: Non dedicated target → different nuclei contamination → complex interpretation .. but → new features .. K⁻ in flight absorption.

$\Sigma^0 \pi^0$ analysis status

Analysis of the 2004-2005 KLOE data (~ 1 fb⁻¹)

Dedicated 2012 run with pure graphite Carbon target inside KLOE

Advantages:

 K^{-}

gain in statistics
K⁻ absorptions occur in Carbon
absorptions at-rest.

MC simulation: 26% of K⁻ stopped in C, 2% of K⁻ stopped in Al hence aluminium contamination from 19% → 7% ... H contamination absent!

•Thickness optimazied (based on MC simulations) to maximize the number of stopping K⁻ in the targed, minimizing the charged particles energy loss.

(~90 pb⁻¹; analyzed 37 pb⁻¹, x1.5 statistics)

Characteristic data topology

Use of two different data samples:

- KLOE data from 2004/2005

 K^{-}

- Dedicated run with Carbon target

Radial position of the K⁻ hadronic interaction inside KLOE:

$\mathbf{K}^{\cdot} " \mathbf{p} " \rightarrow \Sigma^{0} \pi^{0} \rightarrow (\Lambda(1116) \gamma_{3}) (\gamma_{1} \gamma_{2}) \rightarrow (\mathbf{p} \pi^{-}) 3\gamma$

 \mathbf{K}^{-}

First step .. Λ(1116)

Λ(1116) the signature of K⁻ hadronic interaction

starting point of the performed analysis reconstruction of the Λ decay vertex: $\Lambda(1116) \rightarrow p\pi^-$ (BR ~ 64 %)

requests:

 \mathbf{K}^{-}

- vertex with at least two opposite charged particles
- spatial position of vertex inside DC, or in DC entrance wall
- negative tracks with dE/dx < 95 ADC counts.

Positive tracks are requested to have an associated cluster in the calorimeter and the correct *E* - *p* relation. (KLOE Memo 330 September 2006)

Λ (1116) the signature of K⁻ hadronic interaction

Photon clusters identification

 $K^{-}"p" \rightarrow \Sigma^{0}\pi^{0} \rightarrow (\Lambda(1116) \gamma_{3}) (\gamma_{1}\gamma_{2}) \rightarrow (p\pi^{-}) 3\gamma$

1) 3 neutral clusters selection ($E_{cl} > 20$ MeV) not from K⁺ decay (K⁺ $\rightarrow \pi^+\pi^0$)

 K^{-}

2) photon clusters selection: $\chi_t^2 = t^2 / \sigma_t^2$ where $t = t_i - t_i$

time of flights in light speed hypothesis.

Selects three photon clusters in time from the Λ decay vertex r_h

3) photon clusters identification: γ_3 from $\pi^0 \rightarrow \gamma_1 \gamma_2$ distinctioncay

$$\chi^{2}_{\pi\Sigma} = \frac{(m_{\pi^{0}} - m_{ij})^{2}}{\sigma^{2}_{ij}} + \frac{(m_{\Sigma^{0}} - m_{k\Lambda})^{2}}{\sigma^{2}_{k\Lambda}}$$

i,j and *k* represent one of the previously selected candidate photon cluster. 4) Cuts on χ_t^2 and $\chi_{\pi\Sigma}^{-2}$ optimized on MC simulations & splitted clusters rejection

The algorithm has (from true MC information) an efficiency (98±1)% to identify photons and (78±2)% to select the correct triple of neutral clusters.

Photon clusters identification: Σ⁰ invariant mass

$\Sigma^0 \pi^0$ mass & momentum

 $\Lambda(1405)$ signal searched by K⁻ interaction with a bound proton in Carbon

 \mathbf{K}^{-}

 K^-p → Σ⁰ π⁰ detected via: (Λγ) (γγ)

Strategy: K⁻ absorption in the DC entrance wall, mainly ¹²C with H contamination (epoxy)

 $\mathbf{m}_{\pi 0 \Sigma 0}$ resolution $\sigma_{m} \approx 32 \text{ MeV/c}^{2}$; $\mathbf{p}_{\pi 0 \Sigma 0}$ resolution: $\sigma_{p} \approx 20 \text{ MeV/c}$.

Comparison with K⁻ absorption in emulsion

$\Sigma^0 \pi^0$ mass-momentum correlation

Comparison with K⁻ absorption in emulsion

K

Cut for $m_{\pi_0\Sigma_0} < m_{\lim}$.. lower T_{π_0} component (red) according with $T_{\pi^{\pm}}$ from emulsion experiments (EVENTS AT-REST) correlated to the higher $p_{\pi_0\Sigma_0}$ component (190-200 MeV/c) ! ($\sigma_{T\pi_0} = 12.0 \pm 0.2 \text{ MeV}$)

π^0 momentum distribution

in-flight component ... FIRST EVIDENCE IN K⁻ ABSORPTION MASS SPECTROSCOPY

 \mathbf{K}

open a higher invariant mass region

 \mathbf{K}^{-}

The main background sources for this channel are (example in ¹²C):

• $K^{-12}C \rightarrow \Sigma^0(1385) + {}^{11}B \rightarrow \Lambda \pi^0 + {}^{11}B$

 $\Sigma^{0}(1385)$ can not decay in $\Sigma^{0} \pi^{0}$ for isospin conservation.

• Internal conversion $K^{-12}C \rightarrow \Lambda(1405) + {}^{11}B \rightarrow \Sigma^0\pi^0 + {}^{11}B$, $\Sigma^0 N \rightarrow \Lambda N$ competes with the decay $\Sigma^0 \rightarrow \Lambda \gamma$.

Both background sources were analized by different methods:

The numbers of pure background $\Sigma(1385)$ and $\Sigma^0 N \to \Lambda N$ events passing the analysis cuts are normalized to pure signal $\Lambda(1405)$ events, then weighted to the BRs for $\Lambda \pi^0$ direct production (D), internal conversion (IC) and $\Sigma^0 \pi^0$ production due to K⁻ interaction in ⁴He and C respectively :

P. A. Katz et al., Phys.Rev. D1 (1970) 1267

C. Vander Velde-Wilquet et al., Nuovo Cimento 39 A, (1977) 538

The percentages of background events entering the final selected samples are:

 $\frac{n_{\Lambda\pi^0 D \text{ norm}} + n_{\Lambda\pi^0 IC \text{ norm}}}{n_{\Sigma^0\pi^0} + n_{\Lambda\pi^0 D \text{ norm}} + n_{\Lambda\pi^0 IC \text{ norm}}}$

 \mathbf{K}^{-}

 $= 0.03 \pm 0.01$ in DC wall (0.03 ± 0.02 in DC gas)

Small ($\Lambda \pi^0$ + internal conversion) bkg \rightarrow <u>no I=1 contamination</u>

$\Sigma^0 \pi^0$ channel

 \mathbf{K}^{-}

Invariant mass spectra with mass hypotesis on Σ^0 and π^0 non resonant misidentification background subtracted (left)

 $\sigma_{\rm m} \approx 17 \, MeV/c^2$ (DC wall) $\sigma_{\rm m} \approx 15 \, MeV/c^2$ (DC gas)

Similar $m_{\pi 0\Sigma 0}$ shapes due to the similar kinematical thresholds for ⁴He and ¹²C.

2005 DATA

$\Sigma^0 \pi^0$ channel

 \mathbf{K}^{-}

Acceptance corrected $m_{\pi_0\Sigma_0}$ spectra, DC wall (left) DC gas (right)

Acceptance function evaluated in 8 intervals of $p_{\pi 0\Sigma 0}$ (between 0 and 700 MeV/c) 8 intervals

of $\theta_{\pi_0\Sigma_0}$ (between 0 and 3.15 rad) 30 intervals of $m_{\pi_0\Sigma_0}$ (between 1300 and 1600 MeV/c²)

$\Sigma^+ \pi^-$ channel ... a new tool! \rightarrow see Scordo & Tucakovic talks

 $K^-p \rightarrow \Sigma^+\pi^-$ detected via: $(p\pi^0) \pi^-$

$\Sigma^+ \pi^-$ channel ... a new tool! \rightarrow see Scordo & Tucakovic talks

 $K^-p \rightarrow \Sigma^+\pi^-$ detected via: $(p\pi^0) \pi^-$

Fit of $\Sigma^0 \pi^0$ spectrum in C

 K^{-}

8 component fit, simultaneously $m_{\Sigma 0\pi 0}$ & $p_{\Sigma 0\pi 0}$:

- Breit-Wigner resonant component K⁻C at-rest/in-flight. (M, Γ) = (1405 ÷ 1430, 5 ÷ 52)
 - Non resonant $\Sigma^0 \pi^0$ K⁻ H production at-rest/in-flight
 - Non resonant Σ⁰π⁰ K⁻ C production at-rest/in-flight
 - $\Lambda \pi^0$ background ($\Sigma(1385)$ + I.C.)
 - non resonant misidentification (n.r.m.) background

K^{- 12}C → $\Sigma^0 \pi^0$ + ¹¹B (Boron spectator, left in ground state) secondary interactions not taken into account.

Concluding

• The $p_{\Sigma 0 \pi 0}$ distribution shows a double component structure reflected in the $\theta_{\Sigma 0 \pi 0}$ vs $p_{\Sigma 0 \pi 0}$ and $m_{\Sigma 0 \pi 0}$ vs $p_{\Sigma 0 \pi 0}$ correlations. Such correlation is confirmed by the analysis of $p_{\pi 0}$ with similar behaviours in Helium and Carbon.

- The two components are interpreted as due to at-rest and in-flight absorptions of K⁻, responsible for masses above the kinematical limit.
 - Interepretation is confirmed by the analysis of K⁻ stop events in pure Carbon target installed in KLOE.

First in flight evidence in $m_{\Sigma_{\pi}}$ from K⁻ - nuclear absorption!

To be finalized ...

More refined (M,Γ) scan

Introduction of a $\Gamma(E)$ dependece

Test possible intefrence between res. and non-res. production

A very special tought for Prof. Paul Kienle, to whom this work is dedicated.

 \mathbf{K}^{-}

Thanks

SPARE SLIDES ...

 \mathbf{K}^{-}

Σ / Λ conversion in nuclear medium

DATA (in carbon)

Black-> lambda + pi-Red-> lambda + pi- + proton Black-> direct lambda prod Red-> S+ conversion (in flight) Blue-> S+ conversion (at rest)

The extra-p indicates nuclear fragmentation $\rightarrow \Sigma / \Lambda$

K⁻ nuclear absorption in gas

KLOE DC gas mixture (90% He, 10% C_4H_{10})

wents / 3/ mm ratio of absorptions in He and C: 200 $\frac{N_{KHe}}{N_{KC}} = \frac{n_{He}\,\sigma_{KHe}\,BR_{KHe}(\Sigma^0\pi^0)}{n_C\,\sigma_{KC}\,BR_{KC}(\Sigma^0\pi^0)}$ 175 150 Nuovo Cimento 39 A, 538-547 (1977) $\frac{N_{KHe}}{N_{KC}} = 1.6 \pm 0.2$ 125 interaction probability at rest estimated 100 K-H (based on K⁻ interaction in hydrocarbons mixture data) 75 Lett. Nuovo Cimento, C, 1099 (1972) 50 $\frac{N_{KHe}}{N_{KH}} = 570 \pm 71$ 25 ρ_{Λ} limit set taking into account for Λ decay path and MC simulations Lambda extrapolation path (cm) $(\sigma_{\rho\Lambda} = 0.13 \pm 0.01 \text{ cm}): \rho_{\Lambda} > 30 \text{ cm}$

810 final selected $\Sigma^0 \pi^0$ events.

$m_{\pi^0\Sigma^0}$ invariant mass distribution

26

Invariant mass $m_{\pi_{0\Sigma_{0}}}(\text{left})$ and momentum $p_{\pi_{0\Sigma_{0}}}(\text{right})$ of the reconstructed π^{0} - Σ^{0} .

Two components in the $p_{\pi 0 \Sigma 0}$ distribution LM $\approx 100 \text{ MeV/c}$, HM $\approx 200 \text{ MeV/c}$

Invariant mass $\mathbf{m}_{\pi 0 \Sigma 0}$ resolution: $\sigma_{m} \approx 30 \text{ MeV/c}^{2}$, momentum $\mathbf{p}_{\pi 0 \Sigma 0}$ resolution: $\sigma_{p} \approx 15 \text{ MeV/c}$. (true MC information, non resonant, quasi-free K⁻C/K⁻ He, both at-rest/in-flight simulation)

$\theta_{\pi^0\Sigma^0}$ vs $p_{\pi^0\Sigma^0}$ and $m_{\pi^0\Sigma^0}$ vs $p_{\pi^0\Sigma^0}$ correlation

27

Correlations of (bottom) the decay angle $\theta_{\pi 0\Sigma 0}$ (angle between $\pi^0 - \Sigma^0$ in the lab. frame) and (top) of $m_{\pi 0\Sigma 0}$ with the momentum $p_{\pi 0\Sigma 0}$. Red arrow corresponds to kinematical limit at-rest in He.

Comparison with K⁻ absorption in bubble chamber

Cutting for $m_{\pi_0\Sigma_0} < m_{lim}$ (kinematical limit for absorption at-rest in He) a lower T_{π_0} component (left) emerge according with T_{π_-} from He bubble chamber experiments AT-REST correlated to the higher $p_{\pi_0\Sigma_0}$ component centered around 190-200 MeV/c ! (reasonable agreement with MC a.r. left / i.f right) (kinetic energy resolution $\sigma_{T\pi_0} = 11.7 \pm 0.2$ MeV)

28

 $n_{\rm >mlim}/n_{\rm <mlim} = 0.82 \pm 0.06$ only indicative due to C contribution.

The numbers of pure background $\Sigma(1385)$ and $\Sigma^0 N \to \Lambda N$ events passing the analysis cuts are normalized to pure signal $\Lambda(1405)$ events, then weighted to the BRs for $\Lambda \pi^0$ direct production (D), internal conversion (IC) and $\Sigma^0 \pi^0$ production due to K^- interaction in ⁴He and C respectively :

P. A. Katz et al., Phys.Rev. D1 (1970) 1267

C. Vander Velde-Wilquet et al., Nuovo Cimento 39 A, (1977) 538

The percentages of background events entering the final selected samples are:

 $\frac{n_{\Lambda\pi^0 D \text{ norm}} + n_{\Lambda\pi^0 IC \text{ norm}}}{n_{\Sigma^0\pi^0} + n_{\Lambda\pi^0 D \text{ norm}} + n_{\Lambda\pi^0 IC \text{ norm}}} = 0.03 \pm 0.01 \text{ in DC wall } (0.03 \pm 0.02 \text{ in DC gas})$

$m_{\pi^0\Sigma^0}$ spectrum with mass hypotesis

 $m_{\pi_{0\Sigma_0}}$ spectra with mass hypotesis (M.H.) on Σ^0 and π^0 subtracted by *non resonant misidentification* (*n. r. m.*) (p = 0.22±0.01) the observed $m_{\pi_{0\Sigma_0}}$ and $p_{\pi_{0\Sigma_0}}$ are used as input for the MC generation of $\Sigma^0 \pi^0$. Events in gas (blue), events in DC wall (black) normalized to 1.

 $\sigma_{\rm m} \approx 17 \, {\rm MeV/c^2}$ (DC wall) $\sigma_{\rm m} \approx 15 \, {\rm MeV/c^2}$ (DC gas)

Similar $m_{\pi 0\Sigma 0}$ shapes due to the similar kinematical thresholds for ⁴He and ¹²C.

Fit of $\Sigma^0 \pi^0$ spectrum in C

A six component fit was performed:

Resonant component K⁻C at-rest/in-flight. (M, Γ) scan from 1381 MeV/c² to 1430 MeV/c², Breit-Wigner mass distribution

- direct $\Sigma^0 \pi^0$ non resonant production at-rest/in-flight
 - $\Lambda \pi^0$ background ($\Sigma(1385)$ + I.C.)
- non resonant misidentification (*n.r.m.*) background

 $K^- C \rightarrow \Sigma^0 \pi^0 + {}^{11}B$ (boron considered as spectator) secondary interactions not taken into account. Then reconstructed in KLOE using standard KLOE MC (fits take into account for acceptance effects, energy loss..).

Fits performed with $m_{\Sigma_0} m_{\pi_0}$ hypothesis, employing the better resolution to distinguish the similar shapes of the components.

 $p_{\pi^0 \Sigma^0}$ spectrum for boost and anti-boost events

 $p_{\Sigma^0\pi^0}$ distribution for lower (black) and higher (red) p_k values

37

Search for extra-tracks from the hadronic

interaction vertex

Positive tracks are searched by dE/dx vs p. Than the Λ path and charged track are extrapolated backwords for the primary interaction vertex. From the extrapolated $\mathbf{p}_{et} \rightarrow \cos(\theta_{\pi0\Sigma0.t})$

$$\cos \left(\theta_{\pi 0 \Sigma 0, t} \right) = \left(\mathbf{p}_{\pi 0 \Sigma 0} \cdot \mathbf{p}_{et} \right) / \left(| \mathbf{p}_{\pi 0 \Sigma 0} | | \mathbf{p}_{et} | \right)$$

Back to back recoils correspond to K^- He $\rightarrow \Sigma^0 \pi^0 + T$ events at-rest.

33

In both cases γ_3 is not present, if a contamination is present, the neutral cluster which is associated to γ_3 by reconstruction should show differences.

Right: the energy distribution of γ_3 (green) is in perfect agreement with MC simulations of pure signal events (blue) (energy spectrum of $\gamma_1\gamma_2$ is shown in black).

Left: the time distribution of γ_3 (green) is in agreement with the time distributions of the two photons coming from π^0 decay (black).

To test the possible contamination of $\Sigma(1385)$, we employed the great mass difference between $\Sigma(1385)$ and Σ^0 (1192 MeV) to distinguish such events. Indeed Σ^0 decays in its rest frame in $\Lambda\gamma$ with momentum of 74 MeV/c, while $\Sigma(1385)$ decays in its rest frame in $\Lambda\pi^0$ with momentum of 208 MeV/c.

35

The Λ momentum was then transformed in the $\Lambda \pi^0$ rest frame (black distribution) and compared with $K^{-12}C \rightarrow \Sigma^0(1385) + {}^{11}B \rightarrow \Lambda \pi^0 + {}^{11}B$

MC simulated events (green).

Analysis of K- interactions in the beryllium beam sphere

K- interactions in the Beryllium-Alluminum sphere (r = 10 cm) surrounding the interaction point. Only **few events** surviving due to geometrical cut ($r_{\Lambda} < 11.2 \text{ cm}$) to avoid absorptions in air. The invariant mass spectrum with MH is shown.

38

m_{π⁰Σ⁰} spectrum

MC $m_{\pi^0\Sigma^0}$ spectrum for non-resonant, quasi-free $K^- C \rightarrow \Sigma^0 \pi^0 + {}^{11}B.$

AT-REST left, IN-FLIGHT right. MC true black, reconstructed red, reconstructed with M.H. green.

m_{nπ⁰} spectrum

Investigated channels: $K^{-}p^{*} \to \Sigma^{0}\pi^{0}$ and $K^{-}p^{*} \to \Lambda\pi^{0}$ $\Sigma^0 \to \Lambda \gamma$ and $\Lambda \to n \pi^0$ decays With:

a. u. /(10MeV/c²)

950

1100

 $m(MeV/c^2)$

1150

1050

1000

 $K^- "p" \rightarrow \Sigma^+ \pi^-$ channel

$$K^{-} + p + {}^{11}B --> \Lambda^{*}(1405) + {}^{11}B --> \Sigma^{+} + \pi^{-} + (5p+6n?)$$
$$n + \pi^{0} + p <-- \Lambda(1116) + p + n$$
$$\downarrow \gamma + \gamma$$

First hint .. missing mass evidences nuclear fragmentation correlated to the possible internal conversion component

50

