

Alessandra Filippi INFN Torino



Workshop on Advanced Studies in Low Energy QCD in the strangeness sector and possible implications in astrophysics Laboratori Nazionali di Frascati, June 19-21, 2013

### Outline

#### Introduction

 Studies of K<sup>-</sup> absorption on single or fewnucleons by FINUDA

#### Study of two-body absorption reactions

- (pp) absorption:  $K^-A \rightarrow \Lambda p A'$
- (np) absorption:  $K^-A \rightarrow \Sigma^-p A'$

#### Outlook and conclusions

## Studies of K<sup>-</sup> absorptions on nuclei with FINUDA



#### K<sup>-</sup><sub>stop</sub> absorption by one vs many nucleons



Expected signatures: in pionless reactions emission of high momentum nucleons (or light nuclei) and hyperons





#### Studies of K<sup>-</sup> absorptions on two nucleons: $\Lambda p$ (A-[pp]) final state

- Data selection and comparison w/ old data
- Acceptance correction
  Global fit to the data <sup>9</sup>Be
  - method
  - basic hypotheses
- add ons: nuclear fragmentation, ...
   Global fit to the data <sup>6</sup>Li



#### **Ap invariant mass in FINUDA – light targets**

~ 200 events, PRL94 (2005) 212303

#### SEMI-EXCLUSIVE ANALYSIS



2003-2004: 3x <sup>12</sup>C+2x <sup>6</sup>Li+1x <sup>7</sup>Li

- Possible explanations:
  - K⁻pp→∧p: [K-pp] bound state (FINUDA)
  - Decay of heavier kaonic nuclei (Mares et al.)
  - Quasi-Free Two Nucleon Absorptions:
    - K⁻pp→∧p followed by FSI (Magas et al.)
    - Dominance of  $\Sigma^0$  production over  $\Lambda$ : K<sup>-</sup>pp $\rightarrow \Sigma^0$ p followed by  $\Sigma^0 \rightarrow \Lambda \gamma$  decay
    - K-NN $\rightarrow \Sigma N$  followed by  $\Sigma N \rightarrow \Lambda N$  conversion reactions:



## **Proton and \Lambda purity with FINUDA**



## **Ap invariant mass in FINUDA: 9Be**

- 2<sup>nd</sup> data taking, 960 fb<sup>-1</sup>
  - p-shell targets (<sup>6,7</sup>Li, <sup>9</sup>Be, <sup>13</sup>C, <sup>16</sup>O)
  - 8x collected statistics wrt 1<sup>st</sup> run
  - Improvements:
    - tracking efficiency
    - Secondary vertex reconstruction
    - Extended range for reconstructed momenta
    - Selection criteria (missing mass)
  - Large enough statistics:
    - Study of K<sup>-</sup> interactions on single nuclear species
    - Release of some selection cuts with potential distortions (angles)
      - Different shapes
      - Compatible if same cuts are applied



#### Acceptance correction in FINUDA: 9Be(K<sup>-</sup>stop</sub>, Ap)X

- Lower momentum thresholds:
  - p<sub>0</sub> > 70 MeV/c
  - p<sub>p</sub> > 130 MeV/c
- Large acceptance corrections:  $p_p$  ,  $p_A$  < 300 MeV/c
  - Data selection:

A p Invariant Mass

- p<sub>p</sub> > 300 MeV/c
- p<sub>Λ</sub> > 300 MeV/c
- No angular cuts





Entries

629

#### <sup>9</sup>Be(K<sup>-</sup><sub>stop</sub>, Λp)X: spectral composition analysis

- Several QF-2N absorption reactions simulated (+ acceptance correction)
  - Nucleon pairs with Fermi momentum recoiling against A' residual nucleus in its ground state
- Standard set: (hypothesis I)
  - $K^{-9}Be \rightarrow \Lambda p A'$
  - $K^{-9}Be \rightarrow \Sigma^{0}p A'$
  - $K^{-9}Be \rightarrow \Sigma^{0,+}n A' + \Sigma \Lambda C.R.$
  - $K^{-9} Be \rightarrow \Sigma^{0,+} \pi^{0,-} A' + \Sigma \Lambda C.R.$
  - $K^{-9}Be \rightarrow \Sigma^{0,-}p A' + \Sigma \Lambda C.R.$
  - $K^{-9}Be \rightarrow \Lambda pn A''$
  - $K^{-9}Be \rightarrow \Lambda n A' + n FSI$
  - $K^{-9}Be \rightarrow \Lambda p A' + \Lambda FSI$



Problem: how to adapt all simulated contributions to several exp spectra?

#### **Spectral Analysis technique: global fit**

- Several experimental distributions are required to be fitted at the same time by the sum of many QF reactions, through a binned likelihood fit on the global shape
  - 5 experimental distributions: ( $\Lambda p$ ) inv. mass, miss. mass,  $\cos\theta_{\Lambda p}$ ,  $p_{\Lambda}$ ,  $p_{p}$
  - $\geq$ 10 QF reactions to be modeled
  - Output from the fit: fraction of each background reaction



### **Global fit results: hypothesis I**

- The sum of 10 QF background reactions (standard set) explains ~90% of the experimental spectra:  $\chi^2_{NDF} = 3.2$  not satisfactory
- The best fit cannot explain neither the (Λp) inv. mass excess at ~ 2300 MeV/c<sup>2</sup>, nor the angular distribution for back-to-back angles



#### **Global fit results: hypothesis I**



#### Hypothesis II: additional ( $\Lambda$ p) resonant state

- Additional contribution to fill the missing strength: (Ap) bound state with given  $m_{Ap}$  and  $\Gamma_{Ap}$
- First step: fit of the  $(\Lambda p)$  invariant mass spectrum with an additional gaussian function, added to best fit



m: 2298 ± 2 MeV/c<sup>2</sup> σ: 12.2 ± 2.1 MeV

Only valid for the invariant mass projection!

- Second step: simulation of (Ap) signal (+ reconstruction, acceptance correction) over a discrete grid of  $m_{Ap}$  and  $\Gamma_{Ap}$  values
- Series of global fits to find the likelihood minimum  $\Rightarrow$  best fit

## Hypothesis III: (Yp) + recoiling nucleus in excited state

- The kaon might be absorbed by a nucleon pair not on the nucleus surface, but inside the nucleus
  - The recoiling nucleus might be left in an excited state, and then fragment
  - The energy available for the (Yp) system could be lower
  - Sizeable energy difference in heavier nuclei (<sup>9</sup>Be vs <sup>6</sup>Li)

|                 | A – [pp]  | 4H              | t+n                 | d + 2n   | p + 3n   |         |         |         |
|-----------------|-----------|-----------------|---------------------|----------|----------|---------|---------|---------|
| <sup>6</sup> Li | Mass(MeV) | 3751.37         | 3748.49             | 3754.76  | 3756.97  |         |         |         |
|                 |           |                 |                     |          |          |         |         |         |
|                 | A – [pp]  | <sup>5</sup> H  | 4H + n              | t + 2n   | d + 3n   | p+4n    |         |         |
| <sup>7</sup> Li | Mass(MeV) | 4689.85         | 4690.93             | 4688.05  | 4694.32  | 4696.53 |         |         |
|                 |           |                 |                     |          |          |         |         |         |
| <sup>9</sup> Be | A – [pp]  | <sup>7</sup> He | <sup>6</sup> He + n | ⁵He + 2n | 4He + 3n | t+p+3n  | d+p+4n  | 2p+5n   |
|                 | Mass(MeV) | 6545.54         | 6545.09             | 6546.96  | 6546.08  | 6565.89 | 6572.16 | 6574.37 |

 New fits with an additional component: QF-2N (Y+p)+A", followed by A" fragmentation according to phase space

# (Λp) + recoiling nucleus in ground vs excited state: comparison

• The ( $\Lambda$ p) invariant mass for the QF  $\Lambda$ p reaction moves to lower values and helps filling the region around 2300 MeV/c<sup>2</sup> (but is still not enough)



• Sizeable fraction of QF  $\Lambda p$  reaction recoiling against an excited nucleus

#### Global fit results 9Be: hypothesis I+II+III

 Best fit values on a discrete grid m<sub>Λp</sub>= (2298 ± 7) MeV/c<sup>2</sup>, Γ<sub>Λp</sub> = (67 ± 18) MeV

 $K^{-9}Be \rightarrow \Lambda p A'_{q.s.}$ : 0.013 ± 0.003 /ield [%/K stop] / 10 MeV/c<sup>2</sup> 0.05  $K^{-9}Be \rightarrow \Lambda p A'' : 0.055 \pm 0.008$ 0.04  $K^{-9}Be \rightarrow \Sigma^{0}p A': 0.101 \pm 0.011$ 0.03 0.02  $K^{-9}Be \rightarrow \Sigma^{0,+}n A' + \Sigma \Lambda C.R.$  $(+ \Sigma^0 p \rightarrow \Lambda p, + \Sigma^+ n \rightarrow \Lambda p): 0.091 \pm 0.013$ 0.01  $K^{-9}Be \rightarrow \Sigma^{0,+}\pi^{0,-}A' + \Sigma \Lambda C_{*}R_{*}$  $(+ \Sigma^0 p \rightarrow \Lambda p, + \Sigma^+ n \rightarrow \Lambda p): 0.099 \pm 0.017$ 2000 2050 2100 2150 2200 2250 2300 2350 2400 Ap Invariant Mass [MeV/c<sup>2</sup>]  $K^{-9}Be \rightarrow \Sigma^{0,-}p A' + \Sigma \Lambda C.R.$ /ield [%/K<sup>stop</sup>] / 0.05  $(+ \Sigma^0 n \rightarrow \Lambda n, + \Sigma^- p \rightarrow \Lambda n): 0.176 \pm 0.020$ 0.12  $K^{-9}Be \rightarrow \Lambda pn A'': 0.093 \pm 0.016$ 0.1 0.08  $K^{-9}Be \rightarrow \Lambda n A' + n FSI$ 0.06  $K^{-9}Be \rightarrow \Lambda p A' + \Lambda FSI$ 0.04  $( + n(\Lambda) A' \rightarrow n p(\Lambda) A''): 0.087 \pm 0.013$ 0.02 0  $K^{-9}Be \rightarrow XA' \rightarrow \Lambda p A' : 0.077 \pm 0.011$ 0.5 -1 -0.5 0 Cos  $\Theta_{\Lambda n}$ 

#### Fits with narrower resonance: worse

 Narrower signals reproduce in a worse way the spectrum at 2300 MeV/c<sup>2</sup> and above



#### <sup>6</sup>Li(K<sup>-</sup><sub>stop</sub>, Λp)X: global fit with resonant state

- Not sensitive to excited states emission and fragmentation processes (<sup>6</sup>Li =  $\alpha$ +d)
- Best fit values on a discrete grid for a ( $\Lambda p$ ) resonant state: same as for <sup>9</sup>Be

 $m_{\Lambda p}$ = (2298 <sup>+6</sup><sub>-7</sub>) MeV/c<sup>2</sup>,  $\Gamma_{\Lambda p}$  = (67 <sup>+14</sup><sub>-13</sub>) MeV



## <sup>6</sup>Li(K<sup>-</sup><sub>stop</sub>, Λp)X Missing Mass



- Sharp peak in the missing mass spectrum for the  ${}^{6}Li(K_{stop}^{-},\Lambda p)X$ 
  - Close to Ap threshold
  - Kinematics compatible with deeply bound "pionic" state
  - Early predicted by J.Nieves and E.Oset, Z. Phys. A 343 (1992)
    - Deeply bound pionic states formed in the (Σ<sup>-</sup>, Λ) reaction
    - Fraction from the fit:  $\sim 15\%$

## Ap fits: summary and outlook

- From the present best fits it is necessary:
  - to introduce a QF Λp production recoiling against an excited state + fragmentation
    - >5 times larger than QF  $\Lambda p$  against g.s.
  - to introduce a ( $\Lambda p$ ) resonant state
    - its features are similar to the first FINUDA observations:
      - same (large) width: ~ 65 MeV
      - higher mass (30-40 MeV/c<sup>2</sup>)
- Additional component to be further studied: (Σ<sup>0</sup>p) recoiling against an excited nucleus
  - preliminary results:
    - Fit fills most of the spectrum in 2300  $MeV/c^2$  region
    - Sizeable reduction of the width of the (Λp) resonant state (but it is still needed)



#### Studies of K<sup>-</sup> absorptions on two nucleons: $\Sigma^{-}p$ (A-[pn]) final state

- Introduction
- Data selection
- Global fit to the data <sup>6</sup>Li
  - method
- basic hypotheses
  (preliminar) add ons
  Global fit to the data <sup>9</sup>Be, <sup>13</sup>C, <sup>16</sup>O



## K<sup>-2</sup>N absorption: $\Lambda p vs \Sigma^{-}p$

- Initial state: K<sup>-</sup>[pp] vs K<sup>-</sup>[np]
  - statistical weight: favored absorption on [np], factor 2N/(Z-1)
- Final state: total isospin I=0 vs I=1 (additional term in the YN potential)
  - Different interaction of the baryons in a nucleus
    - **N**: attractive potential
    - <u>Σ</u>-N:
      - Real part: attractive shallow potential only in a small region outside the nuclear surface + strong repulsive potential inside the nucleus
      - Isovector + Coulombian term: further repulsion
        - no observation of  $\Sigma$  hypernuclei
        - poor penetration of  $\Sigma^{-}$  into the nucleus  $\Rightarrow \Lambda \Sigma^{-}$  conversion
  - Different Final State Interactions of  $\Lambda$  and  $\Sigma^{\scriptscriptstyle -}$ 
    - Coulombian component

## **Σ**<sup>-</sup>p event selection

- Events with one proton, one  $\pi^{-}$ , one neutron in coincidence
- Unphysical events: cut in missing mass of A(K<sup>-</sup><sub>stop</sub>, nπ<sup>-</sup>p)A' reaction
- $\Sigma^{-}$  signal in ( $n\pi^{-}$ ) invariant mass:
  - S/B > 0.8
  - Exclusive events: S/B > 2.4

| particle | Momentum<br>resolution (σ) | Detection<br>efficiency |  |  |
|----------|----------------------------|-------------------------|--|--|
| proton   | 1%                         | 75%                     |  |  |
| π-       | 0.6%                       | 73%                     |  |  |
| neutron  | 5%                         | 8%                      |  |  |



### **Σ<sup>-</sup>p emission rates in p-shell nuclei**

- Emission rates: from the number of events in the  $\Sigma^-$  peak
  - both for the inclusive and the exclusive sample
  - corrected for the fraction of  $\Sigma$ -'s lost for nuclear capture
- Measured rates are in agreement with older (few) data
  - New measurements for A > 6



#### Σ<sup>-</sup>p spectra global fit – the method

- Two classes of QF reactions are considered:
  - physical reactions with (Σ<sup>-</sup>p) pairs in the final state, recoiling against a nucleus in its ground state
    - $K_{stop}^{-}AZ \rightarrow \Sigma^{-}p^{A-2}(Z-1)$
    - $K_{stop}^{-}AZ \rightarrow \Sigma(1385)^{-}p^{A-2}(Z-1) \rightarrow \Sigma^{-}p^{\pi^{0}A-2}(Z-1)$
    - $K_{stop}^{-}AZ \rightarrow \Sigma^{-}p \pi^{0}A^{-2}(Z-1)$
    - $K_{stop}^{-}AZ \rightarrow \Sigma p \pi^{+}A^{-2}(Z-2)$  (on pp pair)
    - $K_{stop}^{-} AZ \rightarrow \Sigma^{-} p^{A-2}(Z-1) + p$  rescattering
    - $K_{stop}^{-}AZ \rightarrow \Sigma_{pn}^{-}A^{-3}(Z-2)$  (on 3N or np pair in <sup>3</sup>H substructure)
  - background reactions leading to (nπ-p) in the final state, leaking through the selection criteria and entering the Σ-mass window
    - $K_{stop}^{-} ZA \rightarrow \Sigma^{+}\pi^{-}A^{-1}(Z-1)$  ( $\pi^{+}/p$  misidentif.)
    - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}\pi^{0} {}^{A-1}(Z-1)$  ( $\gamma$ /n misidentif.)
    - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{+}\pi^{-} n^{A-2}(Z-1)$  (2N absorption)
    - $K_{stop}^{-} ZA \rightarrow \Lambda n^{A-2}(Z-1)$
    - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}n^{A-2}(Z-1) \rightarrow \Lambda n\gamma^{A-2}(Z-1)$
    - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}n^{A-2}(Z-1) \rightarrow \Lambda np^{A-3}(Z-2)$
    - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{0}n^{A-2}(Z-1) \rightarrow \Lambda nn^{A-3}(Z-1)$
    - $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{-}n {}^{A-2}Z \rightarrow \Lambda nn {}^{A-2}Z$

## Σ<sup>-</sup>p spectra global fit – backgrounds

- Fit to 11 1-d experimental distributions
  - Wide redundance in binned max likelihood fit
- Larger systematic errors expected wrt  $\Lambda p$ 
  - Larger background contamination due to  $n/\pi^0/\gamma$  misidentification
    - Similar detection+reconstruction efficiency for all neutrals:
      - $\epsilon_n = 3.5 \times 10^{-2}$
      - +  $\epsilon_{\pi0}$  = (2.16  $\pm$  0.01)  $\times$  10  $^{-2}$
      - +  $\epsilon_{\gamma}$  = (2.33  $\pm$  0.01)  $\times$  10^{-2}
  - Kinematic cuts reduce the contamination of each background reaction to the level of 10<sup>-7</sup>/K<sup>-</sup><sub>stop</sub>
  - The only sizeable contribution from background reactions given by one-nucleon absorption:  $K_{stop}^{-} {}^{Z}A \rightarrow \Sigma^{+}\pi^{-}{}^{A-1}(Z-1)$
  - No inverse  $\Lambda\Sigma$  conversion taken into account (suppressed)
  - Incoherent background component: mixture of QF reactions + conversion and/or rescattering not leading to Σ<sup>-</sup>p in the final state



- 4 main reactions describe most of the spectra incoherent background at 6% level
- Not sensitive enough to separate  $\Sigma^{-}p\pi^{0}$  and  $\Sigma(1385)^{-}p$  contributions
- Sizeable contribution from Σ<sup>-</sup>pn final state Missing strength at 2300 MeV/c<sup>2</sup>

## <sup>6</sup>Li: best fit - fractions



 Σ<sup>-</sup>p n final state reached through 3N kaon absorption or 2N absorption on t:







Missing strengths: low ( $\Sigma^{-}p$ ) mass, and above 2300 MeV/c<sup>2</sup>



• 4 main reactions describe most of the spectra – incoherent background at 12% level

- Sizeable contribution from Σ<sup>-</sup>pn final state Missing strength at 2300 MeV/c<sup>2</sup>
- Problems in fitting the  $(\pi^{-}p)$  invariant mass





- no contribution from 1N absorption) incoherent background at 12% level
- Sizeable contribution from  $\Sigma$  pn final state Missing strength at 2300 MeV/c<sup>2</sup>
- Problems in fitting satisfactorily the p momentum spectrum ~ 250 MeV/c

Unities 10 NeVic





• LOW STATISTICS - 2 reactions only useful to describe most of the spectra

- Sizeable contribution from Σ<sup>-</sup>pn final state (incoherent background rejected)
- Missing strength at ~ 2320 MeV/c<sup>2</sup> in (Σ<sup>-</sup>p) invariant mass





• LOW STATISTICS - 3 main reactions describe most of the spectra

- Sizeable contribution from Σ<sup>-</sup>pn final state (incoherent background rejected)
- Problems in fitting satisfactorily the  $(\pi^{-}p)$  invariant mass AND p momentum ~ 270 MeV/c

## Σ<sup>-</sup>p fits: common traits

- Global fit with several QF reactions with spectator nucleus in its ground state
- Dominant amplitude:  $\Sigma$ -pn (with a missing neutron)
  - 2N absorption on triton favored with respect to 3N absorption (with phase space emission)
  - Fraction: > 60%
  - Worse fits if replaced by QF Σ-p + p rescattering
- Common missing strengths:
  - In ( $\Sigma^-p$ ) invariant mass: at ~ 2320 MeV/c<sup>2</sup>, narrow (1 bin ~ 10 MeV)
  - In ( $\pi$ <sup>-</sup>p) invariant mass: at ~ 1230 MeV/c<sup>2</sup>
  - In p momentum spectrum: at ~ 250 MeV/c
- Missing ( $\Sigma$ -p) resonant state? I=1 DBKS?
- Effect of excited recoiling nucleus?
- Other sources of incoherent background?

Further studies still needed



## Summary and Outlook



## **Summary and outlook**

• Progress in the study of spectral composition in twonucleon kaon absorptions on some p-shell nuclei

#### K<sup>-</sup>[pp] → Λp in <sup>9</sup>Be and <sup>6</sup>Li

- Detailed study of QF contributions to experimental spectra: global fit
  - Non negligible recoil against excited nuclei
  - Need of additional component at 2300 MeV/c<sup>2</sup> to reproduce the spectra

#### • K-[pn] $\rightarrow \Sigma$ -p in several targets

- Detailed study of QF contributions to experimental spectra: global fits
  - · imperfect fits: additional component needed
    - resonance in the  $(\Sigma^{-}p)$  system?
      - Unlikely.... but some indications in <sup>6</sup>Li
    - fragmentation/excited recoling nucleus effect?
    - further studies on incoherent background shape?
      - Tests underway