

UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA

Le particelle ultrafini e il PM1 a Milano: distribuzione dimensionale, composizione e sorgenti

V. Bernardoni¹, A. Bigi2, M. Elser^{1,*}, P. Fermo³, G. Ghermandi², Gonzalez Turrion³, A. Piazzalunga^{3,4}, G. Valli^{1,5}, <u>R. Vecchi^{1,5}</u>

¹Dipartimento di Fisica, Università degli Studi di Milano ²Dipartimento di Ingegneria, Università di Modena e Reggio Emilia ³Dipartimento di Chimica, Università degli Studi di Milano ⁴Dipartimento di Scienze dell'Ambiente e del Territorio, Università degli Studi di Milano-Bicocca ⁵Istituto Nazionale di Fisica Nucleare, sezione di Milano *ora presso Paul Scherrer Institute, Villingen (Svizzera)

La campagna di misura

DOVE: sito di background urbano a Milano-Città Studi, c/o campus universitario sul tetto del Dip. di Fisica a circa 10 metri dal suolo.

QUANDO: inverno 2012 (dal 9 Gennaio al 18 Marzo, stop nel periodo 6-14 Feb.)

COSA:

- PM1: 120 campioni giorno/notte da 9h (07-16; 19-04) in parallelo su filtri in fibra di quarzo e in Teflon
- Distribuzioni dimensionali in massa e composizione da 40nm a 8.5 µm con *impattori multistadio SDI-Dekati* con supporti in policarbonato e in quarzo in parallelo
- Distribuzioni dimensionali in numero da 8 a 700 nm con Differential Mobility Particle
 Sizer e nel range 0.25-32 μm con Optical Particle Counter (in continuo)
- Equivalent BC con Multi Angle Absorption Photometer e testa PM1 (in continuo)
- ²²²Rn con risoluzione oraria per valutazione stabilità atmosferica e mixing layer height
- Parametri Meteorologici (T, P, RH, WS, WD, GLOB_RADSOL, PREC)
- Inquinanti gassosi c/o stazione ARPA-Milano Pascal

Caratterizzazione fisico-chimica

PM1

- Concentrazione in massa: gravimetria
- Composizione chimica: elementi (ED-XRF, Marcazzan et al. 1998),
- anioni/cationi (IC, Piazzalunga et al. 2013), EC/OC/TC (TOT con protocollo Niosh-like, Piazzalunga et al. 2011), WSOC (TOC), WINSOC (OC-WSOC), levoglucosano, mannosano, galactosano (HPAEC-PAD, Piazzalunga et al., 2010)
 - Caratterizzazione ottica: coefficiente di assorbimento @ 635 nm & 405 nm (PP_UniMI, Vecchi et al., 2014)

Impattore multistadio (SDI, Dekati)

Concentrazione in massa: gravimetria

Composizione chimica: elementi (ED-XRF, Bernardoni et al., 2011), anioni/cationi (IC), EC/OC/TC

(TOT con protocollo Niosh-like), levoglucosano (HPAEC-PAD)

Concentrazione e distribuzione dimensionale in massa

Distribuzioni dimensionali medie della massa

Aerodynamic diameter [µm]

100			
	GMAD [µm]	standard dev. [µm]	RMC [%]
Mass_Type 1	0.28	0.01	25%
Mass_Type 1	0.72	0.06	45%
Mass_Type 1	4.05	0.99	22%
Mass_Type 2	0.11	0.01	8%
Mass_Type 2	0.29	0.02	27%
Mass_Type 2	0.71	0.07	61%
Mass_Type 2	3.70	1.00	29%

Concentrazione e distribuzione dimensionale in numero

AVERAGE particle number concentration (#/cm ³)							
year	TP	UFP	SMP	UFP/TP	SMP/TP	Ref	
	d<1000 nm	d<100 nm	100-1000 nm				
2012	4.8E+03	2.8E+03	2.0E+03	58%	42%	this work*	
min-max	0.2-20E+03	0.1-16E+03	0.06-7.4E+03			this work*	
2004	2.5E+04	2.0E+04	5.5E+03	78%	22%	Lonati et al., 2011	
min-max	1.1-4.3E+04	0.8-3.4E+04	2.5-11.6E+03			Lonati et al., 2011	
* background u	rban station at 10						

TP=total particles UFP=ultra fine particles SMP=sub-micron sized particles

-> riduzione UFP probabilmente dovuta all'introduzione di ULS-fuels (50ppm->10ppm, dal 2009)

come osservato anche in altri Paesi europei

Distribuzioni "tipo" in numero – dati DMPS

Evento di Föhn: 15-16 Feb. 2012

Fine dell'evento di Föhn

Vecchi et al., articolo in preparazione

PM1 e UFP: chiusura di massa

í	A	ulation 1 m	a da		na dati an f) maada	6			Vend		tiolog
	Accum	umulation 1 mode		Accumulation 2 mode		Coarse mode			very large particles			
	GMAD	RMC	n. cases	GMAD	RMC	n. cases	GMAD	RMC	n. cases	GMAD	RMC	n. cases
	(µm)	(%)	(%)	(µm)	(%)	(%)	(μm)	(%)	(%)	(µm)	(%)	(%)
S	0.28	30%	86%	0.66	59%	100%	3.4	17%	71%			
CI	0.36	18%	86%	0.72	29%	71%	4.4	61%	100%	16.1	10%	36%
К	0.26	31%	86%	0.58	46%	100%	3.7	25%	100%	15.7	9%	29%
Ca							3.9	79%	100%	15.7	11%	86%
Ti	0.22	5%	36%				3.5	71%	100%	15.1	13%	64%
Cr	0.31	17%	36%	0.67	38%	57%	2.9	64%	100%	4.7	29%	29%
Mn	0.30	13%	43%	0.72	42%	100%	3.2	50%	100%	15.7	10%	21%
Fe	0.42	6%	21%				3.2	74%	100%	16.6	7%	43%
Ni	0.28	21%	43%	0.48	45%	86%	3.0	50%	93%			
Cu	0.27	6%	71%				3.0	72%	100%	16.3	7%	21%
Zn	0.27	14%	79%	0.77	49%	93%	2.7	43%	100%	14.5	9%	14%
Levoglucosan	0.32	56%	100%	0.63	43%	78%	1.6	5%	78%	5.2	3%	78%
K+	0.29	49%	89%	0.62	37%	89%	1.9	4%	22%	4.1	12%	89%
NO ₃ -	0.31	28%	100%	0.71	61%	100%	2.4	6%	67%	4.0	10%	56%
SO4	0.29	31%	100%	0.67	52%	100%	1.7	8%	56%	4.5	10%	100%
NH₄⁺	0.31	35%	100%	0.70	62%	100%	3.5	2%	44%	8.2	1%	67%

Distribuzione dimensionale: composizione chimica

GMAD=Geometric Mean Aerodynamic Diameter

RMC=Relative Mass Concentration

In generale:

- distribuzioni con 3 o 4 mode per quasi tutte le componenti misurate
- Spesso trovate la condensation e la droplet mode (GMAD \approx 0.3 μ m and 0.6 μ m)
- \bullet Ca, Ti, Fe, Ni, Cu mostrano talora una moda ulteriore intorno a $~\mu\text{m}$ (non in tabella)
- Levoglucosano, K⁺, SO_4^{2-} , NO_3^- and NH_4^+ in alcuni casi mostrano anche moda a ~ 100 nm con RMC<4% (non in tabella)

Impattore multistadio: componenti inorganiche secondarie

Secondary inorganic ions: average size distribution

	GMAD [μm]	standard dev. [µm]	RMC [%]
Sulphate	0.10	0.01	4%
Sulphate	0.29	0.01	31%
Sulphate	0.67	0.03	52%
Sulphate	4.51	1.23	10%
Nitrate	0.11	0.02	1%
Nitrate	0.31	0.02	28%
Nitrate	0.71	0.07	61%
Nitrate	3.96	0.77	10%
Ammonium	0.10	0.02	2%
Ammonium	0.31	0.01	35%
Ammonium	0.70	0.06	62%
Ammonium	3.50	0.39	2%

GMAD [µm]

la corrispondenza fra le mode suggerisce che si tratti di "internally mixed aerosol"

Impattore multistadio: traccianti di biomass burning

Biomass burning markers: average size distribution

	GMAD [µm]	standard dev. [µm]	RMC [%]	% occurrence
Levoglucosan	0.10	0.01	4%	100%
Levoglucosan	0.32	0.04	56%	100%
Levoglucosan	0.63	0.04	43%	78%
K⁺	0.10	0.01	4%	44%
K⁺	0.29	0.01	49%	89%
K⁺	0.62	0.04	37%	89%
K⁺	4.12	1.11	12%	89%

- Condensation mode (~ 300 nm) -> freshly emitted biomass burning particles
- Droplet mode (~ 600 nm) -> aged biomass burning particles
- Coarse mode K⁺ (~ 4 $\mu\text{m})$ -> soil-derived particles

la corrispondenza fra le mode suggerisce che si tratti di "internally mixed aerosol"

NB: Studi recenti (Lai et al. 2014) mostrano che la degradazione del levoglucosano è significativamente ridotta quando questo è "internally mixed" con NH_4SO_4

EBC in PM1

 b_{abs} on quartz-fibre filters $\mbox{ vs. EC}$

Dati MAAP corretti usando: 1) valore di MAC campagna-

specifico opportunamente misurato; 2) applicando algoritmo

per effetto di saturazione a valori alti (Hyvärinen et al. 2013)

Andamento tipico giornaliero Città Studi, Milano, inverno 2012

Andamento tipico EBC giorni feriali/festivi Città Studi, Milano, inverno 2012

Andamento tipico NUMERO particelle feriali/festivi Città Studi, Milano, inverno 2012

PM1 - source apportionment

17 variabili (elementi, NO₃⁻, SO₄²⁻, NH₄⁺, levoglucosano, EC, OC), 110 campioni. Check preliminari sul dataset secondo la "European Guide on Air Pollution Source Apportionment with Receptor Modelling" (*Belis et al., 2014*). Missing data, BDLs e incertezze trattate secondo *Polissar et al. (1998)*.

Modello: constrained ME-2, nel quale informazioni a priori, per es. equazioni di vincolo, possono essere incluse come termini ausiliari della funzione oggetto da minimizzare.

In questo lavoro sono stati introdotti 2 vincoli "fisici" derivanti dal principio di conservazione della massa (*Amato & Hopke, 2012*):

- I contributi di ogni singolo fattore/sorgente in un dato giorno devono essere minori della concentrazione in massa di PM1 dello stesso giorno;
- Per ogni sorgente la somma dei contributi nel profilo del singolo fattore/sorgente deve essere inferiore all'unità

Soluzione ottimale (6 fattori)

Dept. of Physics

PM1 source apportionment

roberta.vecchi@unimi.it

