

Neutralizzatore per aerosol a raggi X deboli

<u>A. Nicosia</u>, F. Belosi, B. Vazquez, G. Santachiara, F. Prodi

Istituto di Scienze dell'Atmosfera e del Clima - CNR

Scanning Mobility Particle Sizer (SMPS)

- Strumento per la classificazione di aerosol ultrafini che permette la misura:
 - della concentrazione
 - dello spettro dimensionale
- ➢ Range: da qualche nanometro a 1 micron.
- Funzionamento: sfrutta la misura della mobilità elettrica "Z" delle particelle di aerosol esposte ad un campo elettrostatico "E" noto. Ciò avviene nella colonna Analizzatore Differenziale di Mobilità.

Analizzatore Differenziale di Mobilità (DMA)

$$Z = \frac{n_e e Cu(Kn)}{3 \pi \eta (d_p)}$$

$$V_m = Z E$$

- L'aerosol confinato da un flusso laminare di aria filtrata, sheat air, scende lungo il condensatore cilindrico DMA.
- ★ L'elettrodo centrale ha una tensione variabile (fino a 10 kV) e l'elettrodo esterno è collegato a terra→ E viene regolato ad un valore stabile per ogni diametro misurato.
- ✤ Particelle di uguale mobilità percorrono uguale cammino: arrivano al foro di selezione solo particelle di uguale Z. Se la carica trasportata dalle particelle n_e è la stessa, l'aerosol in uscita è monodisperso.
- ★ E' importante conoscere e controllare lo stato di carica dell'aerosol per una corretta misura → si usa un neutralizzatore all'ingresso.

Neutralizzatore

- Si espone l'aerosol ad un'alta concentrazione di ioni bipolari ed in tempi brevi si arriva all'equilibrio: stato stazionario vicino all'equilibrio di Boltzmann, descritto dalla teoria di Fuchs (1963) e dall'approssimazione di Wiedensoholer (1988).
- ◆ Stato di carica all'equilibrio → aerosol globalmente neutro. Le particelle trasportano:
 - * in maggior percentuale carica 0 o ± 1 ,
 - ✤ in minor percentuale cariche multiple.
- Per neutralizzare si usano solitamente sorgenti radioattive (⁸⁵Kr, ²⁴¹Am, ²¹⁰Po) che impongono RESTRIZIONI nell'acquisto, utilizzo e trasporto. L'uso dell'intero strumento SMPS è limitato dal tipo di neutralizzatore usato..

'+1 fraction, stationary charge distribution' from Swanson et al. (2013)

Grimm charger ²⁴¹Am

Alternativa: neutralizzatore a raggi X deboli

Lavori principali: Shimada et al (2002); Han et al. (2003);
 Lee et al. (2005); Yun et al. (2009); Kallinger (2012).
 Usano SMPS TSI nel confronto fra diversi neutralizzatori.

SMPS TSI con neutralizzatore X-ray modello 3087

Neutralizzatore Raggi X deboli **TSI** è la versione commerciale più frequente:

- © nessuna restrizione di trasporto,
 - (tasto ON/OFF)
- messuna restrizione di utilizzo,
 (debole intensità: < 9.5 KeV),
- © alto tempo di vita media,

⊗ concepito per essere usato solo con SMPS TSI (di uguale marca).

Neutralizzatore a raggi X deboli TSI

- Neutralizzatore a raggi X deboli TSI è uno strumento STANDALONE?
- Si può inserire al posto della sorgente radioattiva in un SMPS Grimm?

Mancano dati in letteratura. Esistono confronti solo per neutralizzatore a raggi X

deboli e a sorgente radioattiva assemblati con SMPS TSI.

✓ Confronto fatto nel laboratorio ISAC CNR dove sono presenti:

Neutralizzatore raggi X deboli TSI modello 3087

²⁴¹Am (3.7 MBq) con SMPS Grimm

Materiali e Metodi

- Prove di laboratorio con aerosol polidisperso di NaCl (atomizzatore Collison).
- ✤ Ottimizzazione del processo di generazione: concentrazione stabile (±4%).
- Due situazioni analizzate: aerosol carico (precipitatore elettrostatico spento) e aerosol neutro (precipitatore elettrostatico acceso).
- Neutralizzatore X-ray sempre inserito nel set up e due configurazioni:
 - 1) X ray off & sorgente ²⁴¹Am inserita
 - 2) X ray on & sorgente ²⁴¹Am rimossa

Set up sperimentale per le misure comparative fra neutralizzatore Xray e ²⁴¹Am con SMPS Grimm.

Risultati I (aerosol carico)

Confronto neutralizzatore X-ray (<9.5KeV) e ²⁴¹Am (3.7 MBq) con SMPS Grimm:

- minori concentrazioni con neutralizzatore Xray;
- errore assoluto relativo percentuale <3% nel range 10-700 nm.

Distribuzione dimensionale ottenuta con neutralizzatore ²⁴¹Am e X-ray (per aerosol carico).

Errore relativo assoluto percentuale

Risultati II (aerosol neutro)

Confronto neutralizzatore X-ray (<9.5KeV) e ²⁴¹Am (3.7 MBq) con SMPS Grimm:

- minori concentrazioni con neutralizzatore Xray;
- errore assoluto relativo percentuale <9% nel range 10-700 nm.

Distribuzione dimensionale ottenuta con neutralizzatore ²⁴¹Am e X-ray (per aerosol neutro).

Errore relativo assoluto percentuale

Risultati III (parametri statistici delle distribuzioni dimensionali)

	Median	Geom. St. Dev.	Total Conc.
NEUTRAL AEROSOL			
²⁴¹ Am neutralizer	35.3±0.2 nm	2.09±0.01	$(2.10\pm0.06)\cdot10^5\mathrm{cm}^{-3}$
X-ray TSI 3087	34.6±0.2 nm	2.09±0.01	$(1.90\pm0.02)\cdot10^5\mathrm{cm}^{-3}$
Relative difference (respect to ²⁴¹ Am)	(1.88±0.01)%	(0.400±0.002)%	(9.4±0.3)%
CHARGED AEROSOL			
²⁴¹ Am neutralizer	47.0±0.5 nm	2.01±0.02	$(8.5\pm0.2)\cdot10^5$ cm ⁻³
X-ray TSI 3087	45.2±0.2 nm	2.01±0.01	$(8.2\pm0.2)\cdot10^5 \mathrm{cm}^{-3}$
Relative difference (respect to ²⁴¹ Am)	(3.80±0.04)%	(0.166±0.002)%	(3.2±0.1)%

 \rightarrow TSI riporta differenze del 5% sulla mediana misurata con SMPS TSI e neutralizzatore Xray o ⁸⁵Kr.

Risultati IV (coefficiente di correlazione)

- Coefficiente di correlazione misurato (a sinistra): 0.998;
- ➢ Dato del costruttore con sistema TSI (a destra): 0.95.

SMPS+C Grimm model 5400 Long

SMPS TSI model 3080 Long

Valore compatibile alla correlazione trovata fra strumenti diversi: Watson et al. (2011) riporta 0.95 nel range 5-200 nm (TSI Nano, TSI Long e Grimm).

Neutralizzatore Xray usato è un sistema standalone. ATTENZIONE però al Software!
 Versione usata : "Grimm Universal Nano Software V 1.2.3" sia per ²⁴¹Am (3.7 MBq) che
 per X ray (<9.5 keV), considerando un uguale rapporto di carica (Shimada et al. (2002)).

Caratterizzazione delle perdite per diffusione nel tubo neutralizzatore a raggi X

- Generazione controllata di un aerosol nanometrico di concentrazione stabile.
- Misura della granulometria con e senza apparecchio X-Ray inserito (mantenuto spento).
- Stima della differenza delle due curve e determinazione del coefficiente di penetrazione sperimentale.
- Stima della lunghezza del tubo equivalente che simula la perdita diffusiva (equazione di Gormley-Kennedy, 1949). Risultato: L= 65 cm.

Conclusioni & future work

Le prove di laboratorio sono positive:

- ✓ differenze dell'ordine del 10% della concentrazione media per canale;
- ✓ differenze compatibili con quelle riportate in letteratura;
- \checkmark test validati per aerosol neutro e debolmente carico di NaCl .

In futuro:

≻test con particelle di diversa composizione chimica.

➢ prove comparative in outdoor.

Bibliografia

- N.A. Fuchs (1963). On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofisica Purae Applicata, 56, 185–193.
- B.W. Han, M. Shimada, K. Okuyama, M. Choi (2003). Classification of monodisperse aerosol particles using an adjustable soft X-ray charger. Powder Technol., 135, 336–344.
- H. Lee, C. Kim, M. Shimada, K. Okuyama (2005). Bipolar diffusion charging for aerosol nanoparticle measurement using a soft X-ray charger. J. Aerosol Sci., 36, 813–829.
- P. Kallinger, G. Steiner, W. W. Szymanski (2012). Characterization of four different bipolar charging devices for nanoparticle charge conditioning. Journal of Nanoparticle Research, 14, 944-951.
- Shimada, M., Han, B., Okuyama, K., & Otani, Y. (2002). Bipolar Charging of Aerosol Nanoparticles by a Soft X-ray Photoionizer. Journal of Chemical Engineering of Japan, 35(8),786-793.
- Swanson J., de La Verpillière J. and Boies A. (2013). Bipolar Neutralization using Radioactive, X-ray, and AC Corona Methods. Cambridge Particle Meeting.
- Watson, J.G., Chow, J.C., Sodeman, D.A., Lowenthal, D.H., Chang, O.M.C., Park, K., & Wang, X. (2011). Comparison of four scanning mobility particle sizers at the Fresno Supersite. Particuology, 9(3), 204–209.
- Wiedensohlar A., Lutkemeier E. Feldpausch M., Helsper C. (1986) Investigation of the bipolar charge distribution at various gas conditions. Journal of Aerosol Science, 17, 413–416.
- K.M. Yun, S.Y. Lee, F. Iskandar, K. Okuyama, N. Tajima (2009). Effect of X-ray energy and ionization time on the charging performance and nanoparticle formation of a soft X-ray photoionization charger. Advanced Powder Technology, 20, 529–536.

PM2014 GENOVA

Grazie per la vostra attenzione.

Contatto email: a.nicosia@isac.cnr.it

Acknowledgements: Questo lavoro è stato finanziato all'interno del progetto europeo SMILEY, NMP.2012.1.4-2 FP7 SMALL-6-310637

