
Non chiederci la parola che squadri da ogni lato
l’animo nostro informe, e a lettere di fuoco
lo dichiari e risplenda come un croco
perduto in mezzo a un polveroso prato.
...
Codesto solo oggi possiamo dirti,
cio’ che non siamo, cio’ che non vogliamo.

E.M.

Statistics?

Nino

May 21, 2013

Statistics can be used to support or undercut almost any argument. M. vos Savant
Facts are stubborn, but statistics are more pliable. Mark Twain

The average human has one breast and one testicle. Des McHale
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Introduction

Statistics should make experiments understandable. Experiments
have measured properties of Nature (the charge of electron etc.),
the existence of new particles and their interactions, just remaining
in the field we know better: the elementary particles.

We will start with a few important experimental results, to
describe how much statistics has helped.

Statistics role is also extremely important in other fields (medicine,
biology...).
Statistics started with the needs of states to base policy on
demographic and economic data (hence the name). Early studies
dates back to the 14th century: the Nuova Cronica, an history of
Florence by the Florentine banker Giovanni Villani that includes
much statistical information on population, ordinances, commerce
etc.
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A very nice experiment: Anderson 1933

The positive electron.
C. D. Anderson.

A well planned and lucky experiment!
There is no need of statistics: the
track is coming from below (after
crossing the lead plate has lost
energy) it is positive (curvature) and
cannot be a proton (since the range
is too large).
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An almost discovery: BNL 1972

Observation of Muon Pairs in
High-Energy Hadron Collisions.
J. H. Christenson, G. S. Hicks, L. M.
Lederman, P. J. Limon, and B. G.
Pope Columbia University and Brookhaven
National Laboratory
E. Zavattini CERN

That was a case where statistics could not help (please, no
unfolding!). A better experiment was needed!
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A classical discovery: J/ψ discovery

S. Ting 1974

In this case there is no need of
statistics to claim for a
discovery. The J/ψ stands
clearly above a small and flat
background.
Still Ting waited for a
confirmation of his discovery
from Richter, before publishing
it.
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Another classical discovery: the A2 − split effect

In 1970 two CERN
experiments, MMS and CBS,
claimed that the structure
around 1300 MeV, believed to
be the 2+ A2 meson produced
in pion proton collisions had a
mass spectrum split into two
peaks (six sigma effect). Other
experiments confirmed this
finding.

Finally, the removal of a suspect cut and as more data are taken,
the split disappeared and the A2 became a normal, single,
undivided particle.
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Another classical discovery: the Y discovery
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The pentaquark case, (can statistics become a killer?)

CLAS collaboration.

Claimed evidence:

NS√
NB

= 7.8± 1

there is ... overwhelming evidence that the claimed pentaquarks do not exist...
The whole story - the discoveries themselves, the tidal wave of papers by theorists and
phenomenologists that followed, and the eventual ”undiscovery” is a curious episode
in the history of science. (C. Amser et al. (Particle Data Group) (2008)).
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Modern ”discovery” (performed using statistical methods)

The quest for the Higgs is a much larger challenge:

Statistics and its magic is all needed, hoping that it will also
provide some confidence (in the psychological sense) on the Higs
discovery.
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Modern ”discovery”

Updates in Higgs hunting, recent plots with L ≈ 25fb−1.
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Modern ”discovery”

Updates in Higgs hunting, recent plots with L ≈ 25fb−1.
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The first steps to understand

There is a lot of technique in doing statistics. We will try to be
very light.

Some definitions an explications are unfortunately needed. Thus we
will start by revisiting, very shortly, the standard statistical tools:

1 Hypothesis test ← we will discuss only of this

2 Determine parameters

3 Confidence Intervals

4 Coverage

And then some more advanced statistical tools designed for our
search.
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Definition of probability: the frequency school

The probability is a property of the system under study hence can
be measured by:

P(E ) = lim
Ntot→∞

NE

Ntot

P(E ) is a property of the system.

exists only for repeatable experiments;

the theory relies on two concepts: the random event and the
possibility of performing long run of experiments in uniform
conditions, if not in practice, at least in principle.

since P(E ) exists we can repeat the samplings. Even virtual
samplings (without making the experiment) are allowed and
compared with the actual measurement.

This probability is the one used in QM:

P(x ∈ S) =

∫
S
| ψ(x) |2 dV
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Definition of probability: the Bayes school

This probability P(E ) expresses one’s opinion on the proposition
(E ) and depends on the information available to the observer.

To any proposition, on which there is no certainty, we
associate a numerical value, the probability.

The support of the frequency interpretation to probability is
lost. The probability cannot be measured. It is assigned to
the event/proposition by the observer. ”The probability does
not exist” (de Finetti).

There is NO random event, NO repeated samples.

It is used very often in everyday life (...he is probably right...
...mH is probably less than 200 GeV... etc. etc.)

It is subjective and cannot be falsified.

Bayes rule mixes the prior believes to the experiment:

P(θ | data) ∝ P(data | θ) · Prior(θ)
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Definition of probability: the Bayes school

There is nothing like the sample mean:

x̄ =

∑
i xi

n

to estimate the true value of the parameter since there is NO real
value of the parameter... The mean is computed as:

θ̄ =

∫
P(θ | data)d θ

All information is stored in the likelihood L(θ,measured data).
Data are NOT random variables but fixed constant, the random
variable is θ. All inference MUST be done on L only. Thus
repeated samples are prohibited as concepts like E (X ) which relies
on sampling on the whole sample space are also meaningless.
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Fisher significance test (frequency)

H0 and no alternatives
Example:
In a counting experiment, we measure a rate n0. The background
rate is b.

H0: is n0 compatible with the background only? To quantify the
answer we use the Pvalue: the probability to observe results even
more extreme than what is predicted by H0:

Pvalue = P(n ≥ n0 | H0) ( or P(n ≤ n0 | H0))

The argument is: if the Pvalue is too small either H0 is wrong or we got
a rare result.

The decision to discard H0 is finally left to the observer.
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Pvalue: an aside comment

We have to consider the probability of all those results still more
extreme w.r.t. H0 expectations than what we actually measured .
Thus for instance the plots below show, in green the p-value in
case of two measurements (n=12 and n=3) of a Poisson process
with µ = 7.
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H0 has to be rejected if n is too low or too large.
The reason for considering only the right tail is that H0 is the
background only hypothesis. The signal, if exist will produce
counts on the right tail.
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The Pvalue is a random variable

The Pvalue is function of a random variable thus is a RV itself.

It can be shown that the Pvalue distribution is uniform U(0, 1).

The Pvalue is a tool to inform the experimentalist on the
agreement between H0 and data.

If the Pvalue is too low, we call the result significant.

The Pvalue is a piece of information used to help the decision
whether reject H0.
The automatic rejection if the Pvalue is too low has to be avoided.
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Significance, an example

The experiment consists in measuring a Poisson variable:
n ∼ Poiss(n | s + b) s is the hypothetical signal, b is the
background known to be: b = 1.2 (exactly).

The experiment has measured n = 7

H0: s=0

Pvalue = 1−
i=6∑
i=0

Poiss(i | b = 1.2) = 2.5 10−4

It is a significant result, s = 0 has probably to be rejected.

The argument is that a worse result (n equal or larger than 7) will
occur, in average only once in 5000 experiments.
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The Neyman decision making test

We have two hypotheses:

H0: the null hypothesis and HA: the alternative hypothesis.

The measurements (~X = X1 · · ·Xn) are distributed either as f0(X )
or fA(X ). We shall define a region of sample space, wα in such a
way that:

P(~X ∈ wα | H0) = α α is called the size of the test

If the measurements fall in wα we reject H0 and accept HA. α is
the probability of wrongly reject H0, (type I errors). This will
happen in a fraction α of repeated experiments if H0 is true.

1− β = P(~X ∈ wα | HA) is called the power of the test

A well designed test has a large power for a fixed size. A large
power means that the hypotheses an be safely separated.
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Example of Neyman test

In a beam of e, π we have a detector to tag electrons.

π , e

hit

DETECTOR
Electrons

Pions

Threshold

5 10 15 20
T

0.2

0.4

0.6

0.8

1.0

PHTL

H0: the hit is an electron,
HA: the hit is a pion
Type I Error: P(T ∈ wα | H0) = α is the loss of electrons,
Type II error: P(T ∈ w̄α | HA) = β is the contamination of pions
in the electron sample.

The test is designed in order to keep the losses under control (not
larger than α) and the contamination is minimized.
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The difficult part is finding wα

In case the two hypotheses are fully specified, Neyman showed that
the most powerful test is based on the likelihood ratio:

λ(~X ) =
L(~X | HA)

L(~X | H0)

If λ is large then HA is preferred. Thus the test is:

λ(data) > λα we reject H0 and accept HA

but, at the same time:

P(λ(~X ) > λα | H0) ≤ α

This defines λα.
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The Neyman-Pearson lemma

The test is designed in such a way that the fraction of losses
(fraction of experiments rejected even id H0 is true) is not larger
than α.
The power of the test is then optimized.

In decision theory the plane {α, β} is also called ROC plane and is
used to optimize the tradeoff between false positive and true
positive rates.
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Neyman hypothesis test: example

The experiment consists in measuring a Poisson variable:
n ∼ Poiss(n | s + b) s is the hypothetical signal, b is the
background known to be: b = 1.2 (exactly).

The experiment has measured n = 7.

H0: s=0 HA : s > 0

Find a region wα that has probability P(n ∈ wα | H0) ≥ α.

Assume α = 10−3 and solve for nα:

i=nα∑
i=0

Poiss(i | b = 1.2) ≥ α→ nα = 5, (wα : {5,∞})

H0 is rejected (n ∈ wα) and HA is accepted with significance α.
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The CLs method or what to do if the power is low

Expected distributions for a data statistic n: H0,(background only)
(black), and H1 (dashed, red curve), where there is signal,
resulting in larger n.
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The CLs method or what to do if the power is low

The signal production is very small in (a), marginal in (b), while in
(c) the signal is abundantly produced.

n0 events are detected (see (b)). The tail areas of H0 above n0

and of H1 below n0 correspond to probabilities p0 and 1− p1.

(c) shows a situation where H0 and H1 are well separated. Thus,
n0 would result in H1 being excluded, while n1 would be taken as
evidence in favor of new physics.

(b) the signal is weak, and H0, H1 curves largely overlap. If the
sensitivity is small (small power) it is preferred NOT to exclude the
model.

CLs penalizes the Pvalue by an amount that increases with
decreasing sensitivity.
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CLs

CLs =
pµ

1− p0

A value of signal intensity µ is excluded if CLs(µ) < α.

Since 1− p0 < 1:

CLs is more conservative,

CLs coverage is > 1− α,

CLs is used for exclusion.
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Coverage CLs
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All this started long ago with Zech (1988)

In a count experiment with s and b the mean rate for signal and
background, the distribution of counts n is:

P(n; s + b) =
n∑

nb=0

n−nb∑
ns =0

P(nb, b)P(ns , s) = Poiss(n, s + b)

Zech noticed that since N events have been observed, than
P(nb, b) no longer corresponds to our improved knowledge of the
background distributions. Since nb can only take the numbers
nb < N, its distribution has to be renormalized to the new range.

P
′
(n, s + b) =

P(n, s + b)

P(nb ≤ N)

and

CL =
P(n ≤ N, s + b)

P(nb ≤ N, b)
=

CLs+b

CLb
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All this started long ago with Zech (1988)

In the previous formula CL is fixed (95%) and the upper limit for
the signal s (if b is well known) is obtained by solving the
equation.

The procedure looks formally frequentistic but in fact has Bayesian
flavor.
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How Atlas searched for Higgs?

In the experiment each event fills an histogram. In the signal
sample we have:

{ni , i = 1 · · · n}, E (ni ) = µsi + bi

si , bi are the mean of signal and background events, µ is the
strength of the signal (µ = 0 is background only) In a control
sample we monitor the background:

{mi , i = 1 · · ·m}, E (mi ) = u(Θ) Θ are nuisance

The experiment consider two hypotheses:

H0 : µ = 0

H1 : µ ≥ 0 1 could be SM predictions

The statistics used in the analysis is the LR:

λ =
L(µ, ˆ̂Θ)

L(µ̂, Θ̂)
double hat means conditioned to µ
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Atlas search method

The idea is: if we manage to reject H0, we are on the way to
discover new signals.
The statistics to be used is:

q0 = −2Ln λ(0) if µ̂ ≥ 0, else 0

(data disagree from the model only if µ̂ ≥ 0.)
The disagreement is quantified by the Pvalue:

Pvalue = P(q0 ≥ qobs
0 ) =

∫ ∞
qobs

0

f (q0 | 0)dq0

Here f (q0 | 0) is the distribution of qµ=0 computed assuming that
the true strength of the data is also 0.
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Atlas search method

The distribution f (q0 | 0) cal be computed analytically using the
Wilks asymptotic approximation:

f (q0 | 0) =
1

2
δ(q0) + χ2

1

and verified using toy MC.

33 Nino



Atlas Search methods

It is often useful to quantify the sensitivity of an experiment, to
report the expected significance.

For instance we could characterize the sensitivity to discover a
signal (µ) by the mean value of the Pvalue, to reject H1 by testing
H0.

In fact it is more convenient to use the median instead of the mean
because of its invariance under transformations of variables.

If we place limits on a coupling constant or a cross section (which
is usually proportional to a coupling constant squared), then the
median limit on one corresponds to the median limit on the other,
while an average will be pulled to one side by the transformation.
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Atlas Search methods

The sensitivity is illustrated in the next figure:

The distribution f (qµ | µ) is shown as a decreasing line (the curve
is a χ2

1).
In the same plot is shown f (qµ | µ1), the curve is a non central χ2.
The sensitivity is computed as shown:

Pvalue = P(qµ ≥ Median(f (qµ | µ1)))
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Comparing frequency and Baysian methods

Frequency statistics and Bayes statistics use often the same words
to mean different concepts.

Let us see how they compare on the problem of hypothesis test!
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Pvalue in Frequency and Bayes. Berger (PhyStat 2008).

Counting experiment: background and (may be) signal:{
H0 : s = 0
HA : s ≥ 0

X ∼ (s + b)x e−(s+b)

x!
b exactly known

We consider two cases:

x b pvalue the pvalue is (Fisher)

7 1.2 2.5 10−4

pv = P(X ≥ x | b, s = 0)
6 2.2 2.5 10−2

Two comments:

... a hypothesis that may be true may be rejected because it has not predicted
observable results that have not occurred. (Jeffreys)

... a small p-value is only the first step in the interpretation of data. (R.A. Fisher)
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Pvalue in Frequency and Bayes. Berger (PhyStat 2008).

There are a few other remarks to be done:

Two ways of testing: based on the p-value or for fixed size:

Fisher The p-value is used for rejecting H0. In case 1
we reject at the level 10−4

Neyman Fix the size α = 10−3 thus reject H0 if x ≥ nα,
nα the largest x such that P(x ≥ nα | H0) ≥ α.

In Neyman test we should quote an evidence of 10−3. Fisher
test suggest a factor ten smaller.

Sequential experimentation. At LHC each month data are
collected and analyzed. Each month there is space for
discovery the Higgs or rejecting a previous discovery... How
can we be sure that the probability of errors of type 1 is still
α?
In clinical experimentation the experiment stops after a
discovery (for ethical necessity).
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Pvalue in Frequency and Bayes. Berger (PhyStat 2008). I

Bayesian analysis starts from posterior distribution: Hi is the
model or hypothesis. In our case Bayes rule is:

P(Hi | data) =
P(data | Hi )P(Hi )

P(data)
i=1,2

If the model depends on unknown parameters θ: P(data | H, θ),
with a subjective prior π(θ) (subjective since it reflects the
experimenter’s believes), then it is marginalized:

P(data | Hi ) =

∫
P(data | Hi , θ)π(θ)dθ then:

P(H0 | data)

P(H1 | data)
= B01

P(H0)

P(H1)
B01 is the Bayes factor

Posterior Odds = Bayes Factor × Prior Odds
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Pvalue in Frequency and Bayes. Berger (PhyStat 2008). II

In our case:

B01 =
Poisson(x | b + 0)∫∞

0 Poisson(x | b + s)π(x)ds
=

bx−1e−b

Γ(x − 1, b)

Where we have used π(s) = b(s + b)−2 as subjective prior.
The objective prior for the hypotheses is taken as:
P(H0) = P(H1) = 0.5. Since P(H0 | x) + P(H1 | x) = 1 we get:

P(H0 | data) =
B01

1 + B01
evidence

Finally the comparison between Bayes evidence and p-values is:

x b pvalue Bayes evidence P(H0 | x)

7 1.2 2.5 10−4 7.5 10−3

6 2.2 2.5 10−2 21 10−2
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How to interpret B-factors? I

A value of B01 ≥ 1 means that H0 is more strongly supported by
the data than HA.
Harold Jeffreys gave a scale for interpretation of B:

B01 Strength of Evidence (H0)

≤ 1 : 1 Negative (supports HA)
1:1 to 3:1 Barely worth mentioning

3:1 to 10:1 Substantial
10:1 to 30:1 Strong

30:1 to 100:1 Very strong
100:1 and larger Decisive

Comparison to p-value is impossible. P-value considers only H0

and built evidence against it. Here, instead, we have to compare
two hypotheses and make a choice.
Significance test is impossible in Bayes statistics.
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Pvalue in Frequency and Bayes. Berger (PhyStat 2008). I

Berger:The Bayesian error probabilities given in the previous
section differ from the corresponding p-values by factors of 30 and
10 in the two cases, respectively. What explains this?
..... a serious discrepancy remains even when the prior is
eliminated. This can be traced to the fact that the p-value is based
on the probability of the tail area of the distribution, rather than
the probability of the actual observed data.

Two comments:

In spite of the efforts by Berger and others to merge Bayes and
frequency methods it seems to me that the best strategy is to keep
distinct the two procedures, keeping well clear in mind that the
meaning of concepts is often quite different even if the name is the
same.
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Pvalue in Frequency and Bayes. Berger (PhyStat 2008). II

Some problems can only be solved by Bayes methods, other by
both. My personal suggestion is to stick to frequency methods,
whenever possible and not get too confuse by a different answer
from Bayes methods. Frequency methods look preferable in
scientific research, for several reasons.

We will consider next the problem of dependence of CI from the
amount of background where Bayes seem to provide a superior
answer.
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Blind analysis

Now a few comments on a recent trend in data analysis...
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Blind analysis

The method of data analysis that is becoming more and more
popular in HEP is to blind the data or part of the data to
physicists that actually do the analysis, to avoid personal bias that
could distort the final results.

The data will be completely available only after the analysis
method (cuts, corrections etc.) are completely defined.

There are many ways to blind the analysis:

Adding fake data to the experiment data set (that are
removed at the end of the analysis),

Use MonteCarlo only to set up the procedures,

Hide the signal region,

Keep visible only part of data... and many others.

There is a question that arises: after unblinding are we permitted
to modify the cuts?
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Blind analysis, example of bias

We will describe now a few results where bias could be suspected.

Could a blind analysis procedure have avoided these biases?

I am not sure that all the blind analyses did not have some smart
student that, to avoid bad surprises did not peer in the hidden
data...

How much do we pay for this (excess) of rigor?
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Blind analysis, example of bias

Here are examples of the measurement of neutron and K 0
s lifetime,

as a function of the year of the measurement.

Clearly there is a trend in the sequence of measurements; there is
the suspect that the measurement are not independent of previous
results.
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Blind analysis, example of bias

This is a summary of LEP results on Rc = Z→cc̄
Z→qq̄ :

Here the problem is that data do not fluctuate enough and any
test statistics would fail.
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Blind analysis

Mendel in his long and careful study of the genetic laws, made
many hybridization experiments on garden peas (Pisum sativum).
Mendel studied in particular the color of peas that do not blend
upon cross pollination.
F1 was pure line of yellow peas. Two traits were identified: Y
(dominant yellow), g(recessive green). When F1 plants breed, each
has an equal chance of passing on either Y or g units to each
offspring (F2 generation).
The possible combinations are gY , Yg , YY and gg . Three will
give yellow offsprings since have at least one Y dominant unit.
Only one combination will give green offsprings since it has two
recessive traits. This is the origin of the 3:1 law.
Fisher analyzed the results of the F2 ratio and found the ratio
Y-to-g to be implausibly close to the expected ratio of 3 to 1 and
boosted against Mendel accusing him of fraud. (Mendel was dead
since many years.)
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Blind analysis

Reproduction of his experiments has demonstrated the validity of
his hypothesis and correctness of the results.
It is possible that this is as an example of confirmation bias. This
might arise if he detected an approximate 3 to 1 ratio early in his
experiments with a small sample size, and continued collecting
more data until the results conformed more nearly to an exact
ratio.
To be noted that a blind analysis in this experiment would be
impossible. Each plant of pea has to be inspected carefully and
eventually rejected.
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