Borexino

2012/2013

Attività sul rivelatore

- presa dati
- Manutenzione elettronica

Analisi concluse in questo anno

- Update dell' analisi dei geo-neutrinos
- Studio della produzione nuclidi cosmogenici
- Studio della modulazione annuale dei neutrini solari

Analisi in progress

- Analisi del flusso dei neutrini da pp ;
- Update della ricerca di processi rari
- Analisi del flusso dei neutrini dal ciclo CNO
- Proposal per lo studio di oscillazione in v sterile

PUBBLICAZIONI 2012/13

 Measurement of geo-neutrinos from 1353 days of Borexino Physics Letters B 722 (2013) 295-300

SUBMITTED:

- ♦ Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth
- > New limits on heavy sterile neutrino mixing in 8B-decay obtained with the Borexino detector
- SOX: Short distance neutrino Oscillations with BoreXino
- \diamond Lifetime measuremets of ²¹⁴Po and ²¹⁰Po in the CTF liquid scintillator detector at LNGS

PUBBLICAZIONI recenti ma già discusse nel 2012

- First Evidence of pep Solar Neutrinos by Direct Detection in Borexino PRL 108, 051302 (2012); → selezionato da APS per essere inserito negli Highlights
- Cosmic-muon flux and annual modulation in Borexino at 3800 m water-equivalent depth, Journal of Cosmology and Astroparticle Physics Volume 2012 May 2012
- Search for Solar Axions Produced in p(d, ³He)A Reaction with Borexino Detector, Phys. Rev. D, Volume 85, Issue 9 (2012)

Borexino: Phase 1 and Phase 2

Data taking from May 2007

Importance of studying solar neutrinos

Astrophysics:

Open issues: solar metallicity controversy

- Metallicity (the abundance of elements heavier than He) is used as input in the Standard Solar Model;
- The neutrino fluxes depend on it;
- Differences as large as 30-40% (for CNO);
- Differences of ~9% for $^7\text{Be}\ \nu$

Sources	$\Phi(\nu \text{ sec}^{-1} \text{ cm}^2)$	$\Phi(\nu \text{ sec}^{-1} \text{ cm}^2)$	Difference
	high-metallicity	low-metallicity	%
pp	$5.98(1\pm0.006)\times10^{10}$	$6.03(1\pm0.006)\times10^{10}$	0.8
рер	$1.44(1\pm0.012)\times10^{8}$	$1.47(1\pm0.012)\times10^{8}$	2.1
hep	$8.04(1\pm0.300)\times10^3$	$8.31(1\pm0.300)\times10^3$	3.3
^{7}Be	$5.00(1\pm0.070)\times10^9$	$4.56(1\pm0.070)\times10^9$	8.8
^{8}B	$5.58(1\pm0.140)\times10^{6}$	$4.59(1\pm0.140)\times10^{6}$	17.7
^{13}N	$2.96(1\pm0.140)\times10^{8}$	$2.17(1\pm0.140)\times10^{8}$	26.7
^{15}O	$2.23(1\pm0.150)\times10^{8}$	$1.56(1\pm0.150)\times10^{8}$	30.0
^{17}F	$5.52(1\pm0.170)\times10^{6}$	$3.40(1\pm0.160)\times10^{6}$	38.4

•Solar Model: Serenelli, Haxton and Pena-Garay arXiV:1104.1639 •High metallicity GS98 = Grevesse et al.S. *Sci. Rev. 85,161 ('98);* •Low metallicity AGS09 = Asplund, et al, A.R.A.&A. 47(2009)481

Particle physics: the so-called "solar neutrino problem" has provided one of the first hints towards neutrino oscillations;

• Now we know that neutrinos oscillate in their path from Sun to Earth;

• "LMA solution":
$$\Delta m^2 = 7.6 \times 10^{-5} \text{ eV}^2$$
; $tg^2\theta = 0.468$

Open issues: precision measurements of solar neutrino sources at low energies probe P_{ee} in the vacuum to matter transition region which is sensitive to new physics;

New result: annual modulation of the v signal (PHASE 1)

max flux: Jan. 3rd ε=0.0167

$$\Phi_{E} = \Phi_{0} \left(1 + 2\varepsilon \cos \left(\frac{2\pi}{T} - \varphi \right) \right)$$

Spectral fit in sub-periods: too large stat. errors Analysis method:

- > Select a proper energy region, group data in time bins and search for a periodical component
- Enlarge the fiducial volume (with respect to the ⁷Be flux meas.)
 3 methods (consistent results)
 Fit of the rate vs time
 Lomb Scargle analysis

- Empirical Mode Decomposition

2.0

2.5

3.0

Normal oscillation $\phi \div 1/r^2$

6.8% peak-to-peak

7Be v interaction rate cpd/100t

47.5

46

44.5

45.0

47. 46.5

Expected amplitute of 7 Be v signal

N = 157

1.5

Time (years)

1.0

0.5

New result: annual modulation of the v signal (PHASE 1)

DETECTOR RESPONSE very stable:

- •Energy scale stability:
- ²¹⁰Po peak statibility in the enlarged (145 t) FV : rms/peak 0.8 %
- Pulse shape discrimination and position reconstruction:

no detectable issue about stability

- The challenge: amplitude of some untaggable background (²¹⁰Bi) not stable in time
- Background shape reproducible during time (no new components!)

Data selection and FV

DATA sample for seasonal variation analysis:

- Standard cut as in the ⁷Be flux
- ²¹⁰Po rate is also time dependent
- Remove ²¹⁰Po by pulse shape discrimination
- Hard cut

+ removal of the events above the red line

Pulse shape discrimination parameter vs energy (Npe)

IV dependent Ext_ γ:

- Enlarged (double) FV compared to ⁷Be flux meas
- affected by the Ext_ Gamma's,
- Spatial cut defined using Ext_source calibration data.
- Vessel shape and position change during time
- Measure week by week the vessel shape and position

(using radioctive decay of vessel contaminants)

Annual modulation of the v signal (PHASE 1): counts vs time

Annual modulation of the v signal (PHASE 1): Lomb Scargle analysis

• From the annual flux modulation study, no indication of anomalous oscillation pattern (in agreement with the MSW-LMA scenario)

annual modulation of the v signal (PHASE 2): counts vs time

results after the scintillator purification

Geo v: new Borexino results

Previous Borexino result: G. Bellini et al., (Borexino Coll.) Phys. Lett. B 687 (2010) 299 Kamland: T. Araki et al., (Kamland Coll.) Nature 436 (2005) 499; A. Gando et al. (Kamland Coll.) Nature Geoscience 4 (2011) 574

Lippe

Outer come

ies dour uter con

Geo v: signal and background

Total

Background not due to reactors is very small 0.70 ±0.18 events

Main background: anti v from reactor $N_{react} = \sum \sum \frac{\eta_m}{\Lambda - T^2} P_{rm} \times$

Monte Carlo simulation of the geov and reactor signal

$\sum_{r=1}^{\infty} \sum_{m=1}^{\infty} 4\pi L_r^2$					
×∫	$dE_{\bar{\nu}_e} \sum_{i=1}^{4}$	$\int_{-1}^{1} \frac{f_i}{E_i} \phi_i(E_{\bar{\nu}_e}) \sigma(E_{\bar{\nu}_e}) P_{ee}(E_{\bar{\nu}_e}; \hat{\theta}, L_r),$			
Source	Error				
	[%]				
$\phi(E_{\overline{\nu}})$	3.5	446 reactors			
Fuel composition	3.2	Data from TAFA			
θ_{12}	2.3				
P_{rm}	2.0				
Long–lived isotopes	1.0				
E_i	0.6				
θ_{13}	0.5				
L_r	0.4				
$\sigma_{\bar{\nu}p}$	0.4				
δm^2	0.03				

0.035.8

Background source	Events
⁹ Li ⁻⁸ He	0.25 ± 0.13
Fast <i>n</i> 's (μ 's in WT)	< 0.007
Fast <i>n</i> 's (μ 's in rock)	< 0.28
Untagged muons	0.080 ± 0.00
Accidental coincidences	0.206 ± 0.00
Time corr. background	0.005 ± 0.01
(γ,n)	< 0.04
Spontaneous fission in PMTs	0.022 ± 0.00
(α, n) in scintillator	0.13 ± 0.01
(α, n) in the buffer	< 0.43
Total	0.70 ± 0.1

Geo v results: evidence of the signal

Exposure: 613±26 ton year – 46 Candidates

TNU= terrestrial v units= 1/ev/y/10³² protons

N _{reactor} Expected with osc.	N _{reactor} Expected no osc.	Others back.	N _{geo} measured	N _{reactor} measured	N _{geo} measured	N _{reactor} measured
events	Events	events	events	events	TNU	TNU
33.3±2.4	60.4±2.4	0.70±0.18	14.3±4.4	31.2 _{-6.1} +7	38.8±12.0	84.5 ^{+19.3} -16.9

Th/U=3.9 mass ratio fixed to chondritic value

geov results: U and Th separation

geov results: comparison with expectation

geov results: radiogenic heat

- Contribution of the radioacative decays of ²³⁸U and ²³²Th to the total radiogenic heat?
- Generated heat within the possible BSE models explainable by the observed geo $\boldsymbol{\nu}.$
- Errors on the geov flux still large
- Kamland and Borexino results very similar (two different places)

Toward the Borexino PHASE 2 and more

After the purification of the scintillator

- Krypton: strongly reduced: consistent with zero cpd/100t from spectral fit
- ²¹⁰Bi : from ~70 cpd/100tons to 20 cpd/100tons);
- > 238 U (from 214 Bi-Po tagging) < 9.7 10⁻¹⁹ g/g at 95% C.L.
- ➢ ²³²Th < 2.9 10⁻¹⁸ g/g at 95% C.L.
- ≥ ²¹⁰Po
- It may be possible to estimate the ²¹⁰Bi content from ²¹⁰Po evolution in time;

Physics goals on PHASE 2

- Improve limit on CNO (observation?); (²¹⁰Bi suppression required);
- Improve significance of pep signal (3s or more) ²¹⁰Bi suppression required;
- Search for pp neutrinos (⁸⁵Kr suppression helps);
- Improve precision on ⁷Be neutrinos (²¹⁰Bi and ⁸⁵Kr suppression required);

SOX: A Short Baseline neutrino oscillation experiment with Borexino see "Seminario di Dipartimento"

Borexino

con sorgente esterna di ^{51}Cr di ν

- Neutrino magnetic moment
- Neutrino-electron non standard interactions
- Probe v_{e} e weak couplings at 1 MeV scale
- Probe sterile neutrinos at 1eV scale
- Probe neutrino vs anti-neutrino oscillations on 10m scale

Q.

W/kCi

0.19

Reach of the sterile neutrino search with the ⁵¹Cr source

Analisi termica e meccanica della sorgente

con il servizio progettazione meccanica

- Scopo dello studio:
 - definire il progetto meccanico
 - definire in maniera controllata la distribuzione di temperatura nei vari componenti della sorgente (il materiale stesso nonché lo schermo di tungsteno), tenendo conto della generazione di calore causata dal decadimento del Cr51 generato dall'irraggiamento al reattore.
- E' importante che
 - non venga superata la temperatura a cui il Cromo sinterizza (700 gradi)
 - la temperatura esterna del tungsteno sia non eccessiva, 80-90 gradi, anche per questioni di sicurezza, prevedendo allo scopo un'opportuna alettatura.
 - Inoltre la distribuzione superficiale di temperatura deve essere la più uniforme possibile per garantire la misura precisa dell'intensità della sorgente stessa, tramite un calorimetro ad-hoc in cui verrà inserita

Simone Coelli e Mauro Monti²¹

Composizione del Gruppo di Milano

	Altro	Borex		Altro	Borex
G. Bellini			L. Miramonti	Auger	40%
B. Caccianiga	Auger	40%	G. Ranucci	CTF-RD-DS	30%
D. D'Angelo	CTF	60%	A. Re (A.R)		100%
M.Giammarchi	AEGIS	40%	A. Brigatti	CTF-RD-DS	80%
P. Lombardi	CTF-RD-DS	60%	S. Parmeggiano	CTF-RD-DS	80%
L. Ludhova		Art.INFN	P. Saggese	CTF-RD-DS	80%
E. Meroni	CTF-RD-DS	70%			

Richieste 2014 In linea con quanto chiesto per il 2013

Attività prevista per il 2013/14

X Astenerci dal fare operazioni sul rivelatore

- Continuare l'analisi dei dati raccolti prima della purificazione mediante "water extraction" per la determinazione del rate dei v solari da pp e per la modulazione annuale dei v solari da ⁷Be.
- Analisi dei dati che saranno raccolti dopo la ripurificazione allo scopo di verificare la possibilità ridurre ulteriormente gli errori sui flussi misurati.
- Sorgenti:
 - studiare la fattibilità di realizzare sorgenti di v e anti-v per lo studio di oscillazioni di neutrini a breve distanza.
 - Recuperare la sorgente da Saclay
 - Studio per l'irraggiamento presso reattori europei