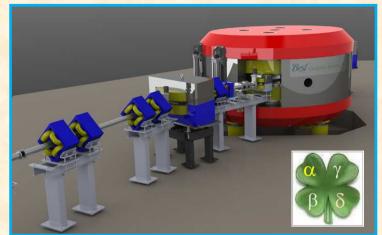

https://sites.google.com/site/neutargs/general

GOAL: develop high power neutron production targets


- WP1: SEE (Single Event Effects in micro-electronics)
- WP2: FARETRA (Fast Reactor Simulator for Transmutation studies)
- WP3: **BNCT** (Boron-Neutron Capture Therapy of cancer)
- WP4: **BSA** (Beam Shaping Assembly target test setup)
- WP5: SCAR (for Sub-Critical Accelerator Reactors)
- WP6: NUWAC (for Nuclear Waste Characterization)

3 sezioni INFN: Padova (WP1) LNL (WP1, WP2, WP3) Pavia (WP4)

A high-current (700 μ A) variable energy (35-70 MeV) proton cyclotron is under construction for the **SPES project** (*) at the INFN LNL to be commissioned in 2014/15.

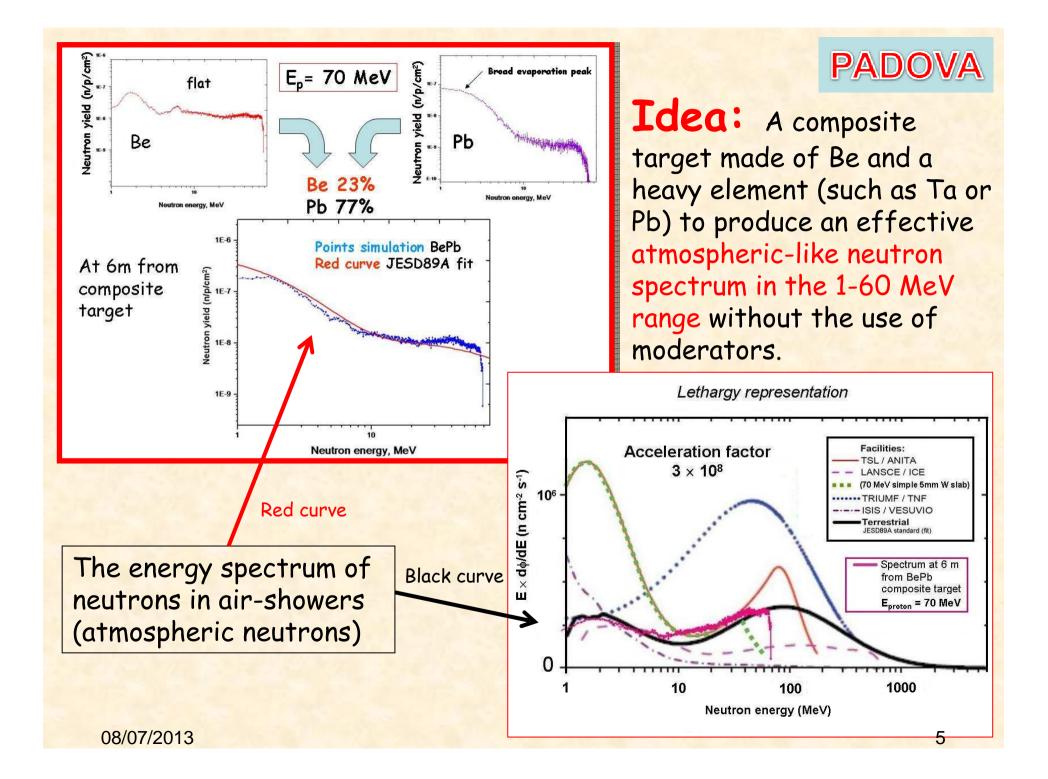
This opens up the possibility of high flux neutron irradiation facilities to perform various research activities. But then need to first develop high power production targets.

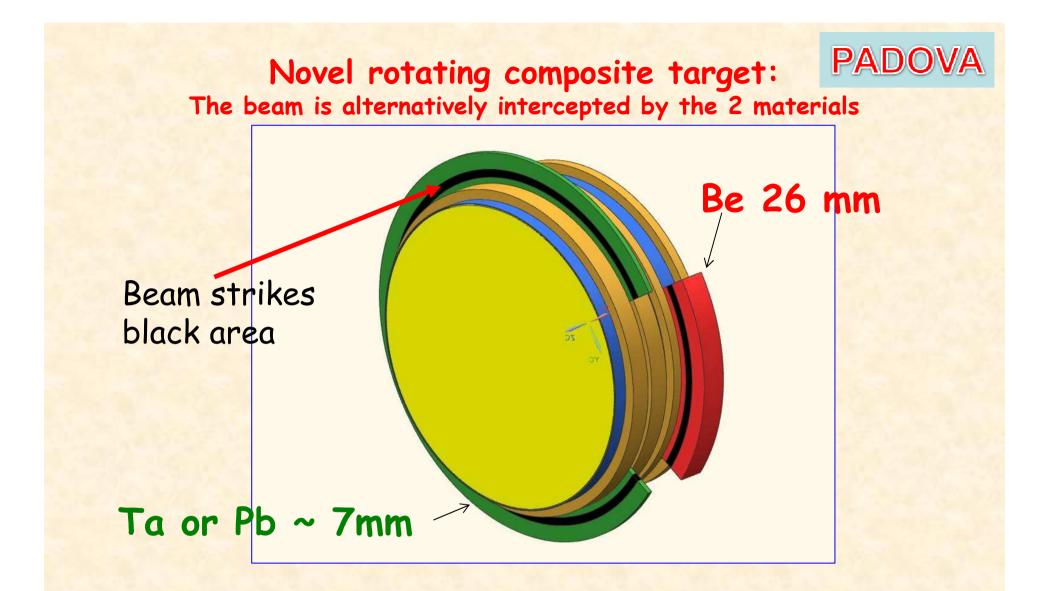
NEUTARGS Padova

GOAL:

Develop a high power target to produce neutrons with an atmospheric-like continuous energy spectrum in the 1-60 MeV range.

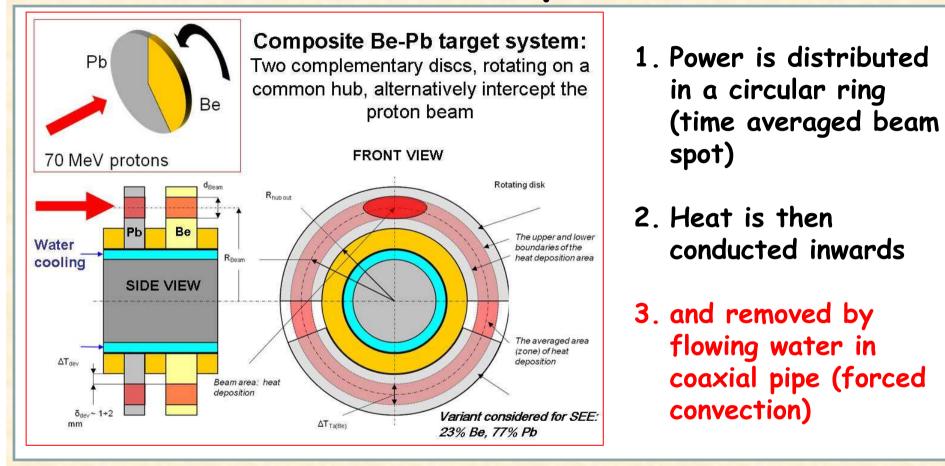
CONTEXT:


A neutron irradiation facility at SPES (δ -phase)


APPLICATIONS:

Studies of neutron-induced Single Event Effects in electronics.

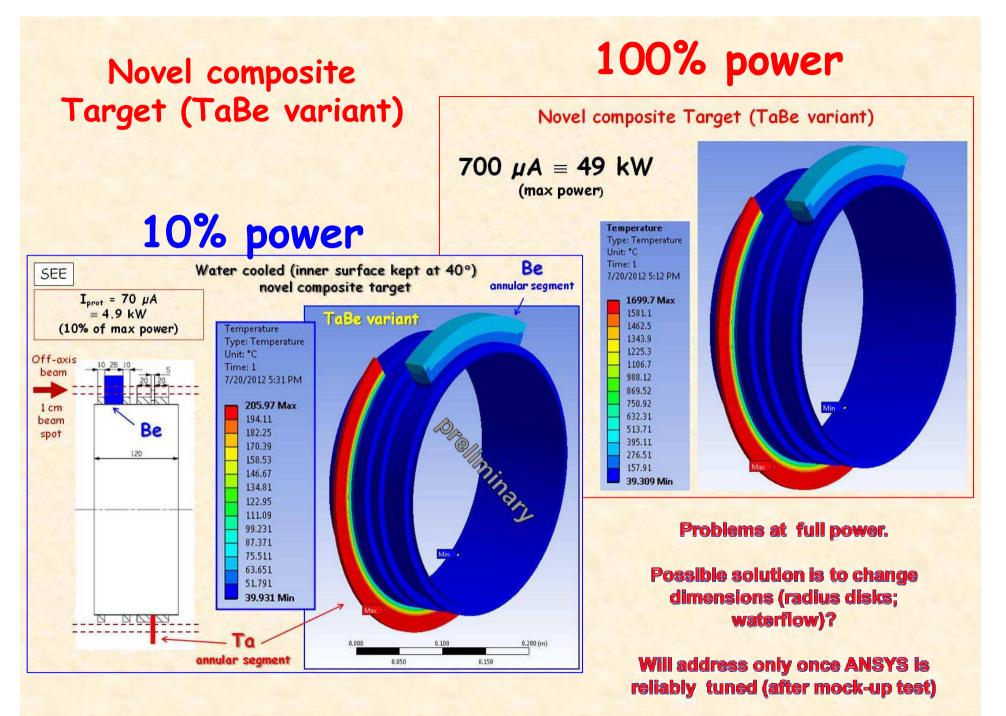
NEUTARGS INFN PADOVA composition and tasks


COMPOSIT	ION		
Ricercatori:		PADOVA	
• Silvestrin L. (Assegnista)	70%		
• Candelori A.	70%		
• Zanella G.	0%		
Pavan P.	0%	State of the second second	
<u>Tecnologi</u> :			
• Wyss J. (RESPONSABILE NAZIONALE)	70%		
• Pepato A.	30%	the second for the second	
• Ferrari L. (dottorando)	??%	2-107 1 2-107	
Totale	2	4 FTE	
, or all			
TASKS			
🖵 coordinamento generale del lavoro su SEE target	S	2 - 4 - A - A - 4 - A - A - A - A - A - A	
		State of the state of the	
realizzazione bersaglio composito PbBe	140		
• studio ingegneristico (mock-up, dissipazione	potenza (1° anno)))	
 acquisto materiale (2° anno) progetto esecutivo prototipo (2° anno) 			
• costruzione prototipo (3° anno)			
 test termo-meccanici e di integrità (3° anno) 		and the second se	
08/07/2013		4	

Note: This target is "not-thick"; i.e. does **not stop the protons** (this avoids Hydrogen build up in Be and hardens the spectrum by containing the production of slow neutrons). Most of the protons pass through without causing nuclear reactions. The *spent proton beam (with residual energy ~ 15 MeV)* is then magnetically deflected towards a beam dump.

Power dissipation

It is of primary importance to validate ANSYS calculations by measuring the heat transfer coefficient h (W/m²K) to the flowing water.


08/07/2013

PADO

heat-transfer coefficient h (forced convection)

- It is not a thermal property, as is thermal conductivity. Its value cannot be looked up in a table of properties.
- In general h must be determined experimentally; its determination is indeed the primary task of experiments in a forced convective system.
- Once h is determined the performance of a cooling system can be reliably predicted.
- In order to determine an experimental value for h, three primary properties of the fluid must be determined: temperature, conductivity, and fluid velocity. For most applications, the heat transfer coefficient will be strongly coupled with fluid velocity.

The mock-up target system must be "realistic"; i.e. we want to obtain only pertinent information.

Situation summer 2013 NEUTARGS Padova

• We decided to modify an existing chamber system (of the proton energy shaper of LENOS) and devised a very realistic mock-up with which to measure h and tune ANSYS.

• Executable drawings are NOW being evaluated.

The mock-up is a true stepping stone towards the final design (if significant modifications are found to be necessary).

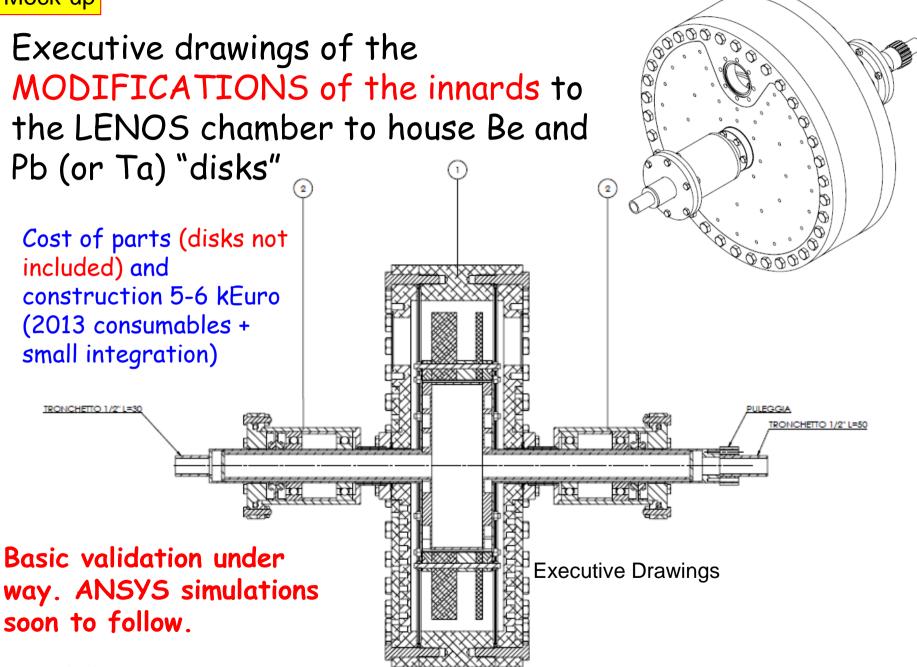
E' necessario valutare la potenza massima del bersaglio nel contesto delle possibili caratteristiche della facility di irraggiamento. Sarebbe forse inutile progettare un bersaglio di altissima potenza, costoso e di difficile realizzazione, che potrebbe non essere mai usata a piena potenza per motivi legati all'utilizzo e gestione della facility.

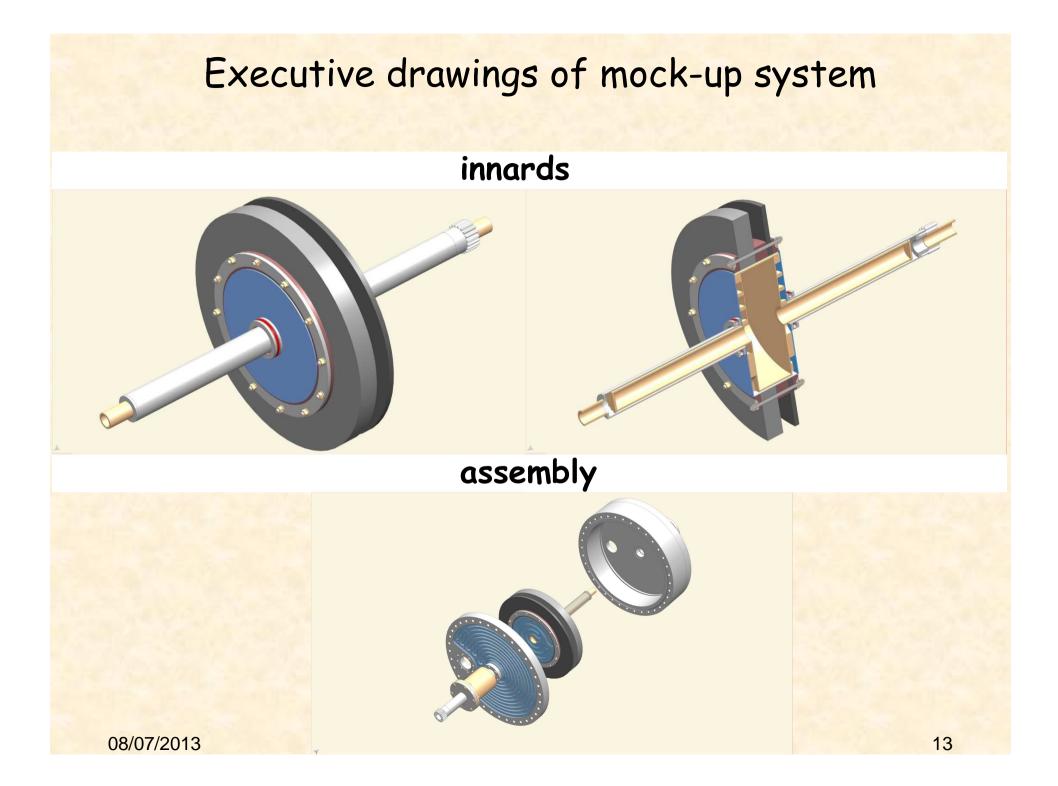
Mock-up the chamber of the proton energy shaper of LENOS at LNL

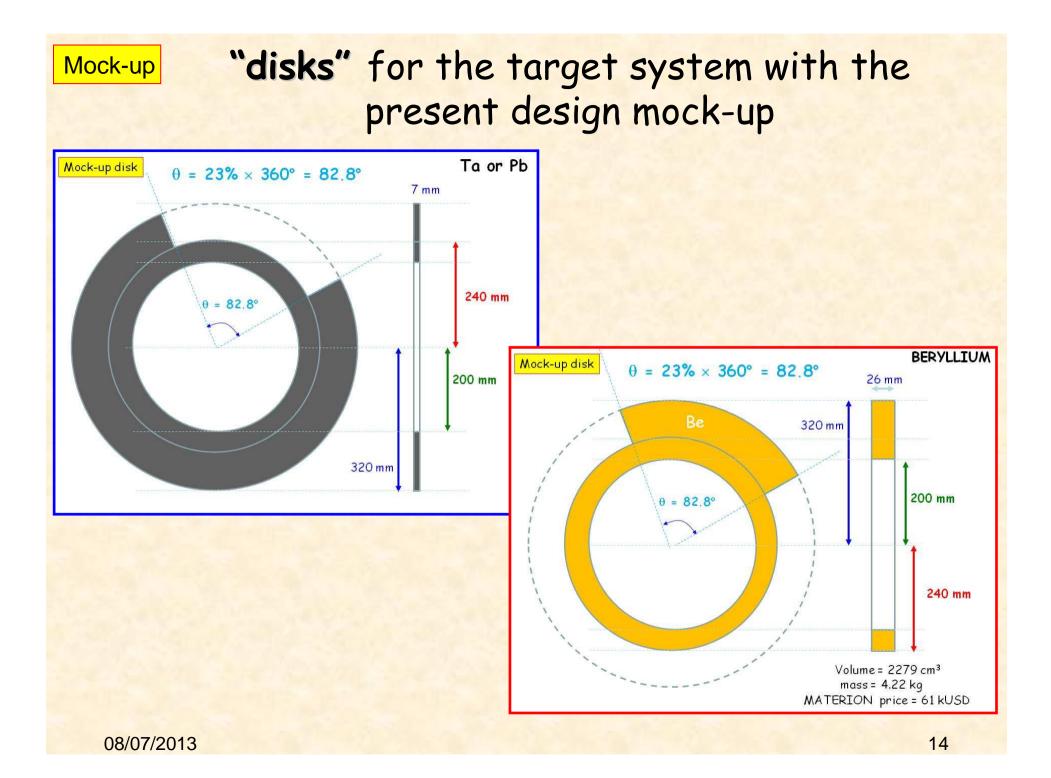
Water cooled serpentine

Beam entrance

Made by VCS, Parma


Axial water flow and rotating shaft



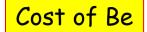


Mock-up

Mock-up for tests:

• The high cost of Beryllium (machined) guides the design of the targets. In particular the cost of the test targets of the mock-up should be contained (within NEUTARGS funding, plus some additional funds from other sources).

•The thickness of the test disks depends on where the beam test is made (on the proton energy). *See Next slide*.


• BUT one can evaluate the h of the forced water cooling by using another material instead of Be, say aluminum or copper.

• Because of high cost of Be, we could change the design of the test Be disks... an idea in to pursue towards the <u>final</u> design ("sector" instead of "disk")

Thickness of test-disks depends on where beam tests are made

- Pavia 18 MeV proton cyclotron (for thin QMN targets only)
- JRC 40 MeV (up to 30µA) cyclotron at Ispra (Varese)
- iTHEMBA 66 MeV (300 µA) cyclotron (a possibility in Dec 2013)
- and of course ... SPES cyclotron 70 MeV (500 μ A)

					(*) SRIM tables
	Energy (MeV)	Range in Be (mm) ^(*)	Range in Pb (mm) ^(*)	Range in Al (mm) ^(*)	(**) linear interpolation
	18	2.30	0.79	1.75	Choice Be test disk 9 mm
	40	9.77 2.9		7.23	Choice Pb test
	66	24.17 ^(**)	6.97(**)	19.57(**)	disk 2.8 mm
	70	26.85	7.70	19.57	Choice Al test disk 7 mm
08/0	7/2013				16

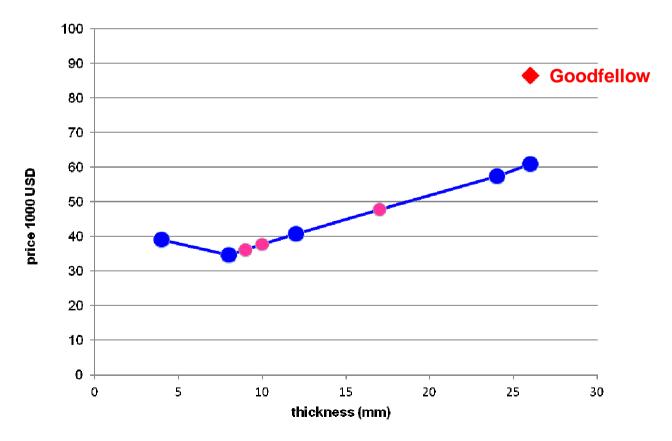
Very high cost of Be (machined!)

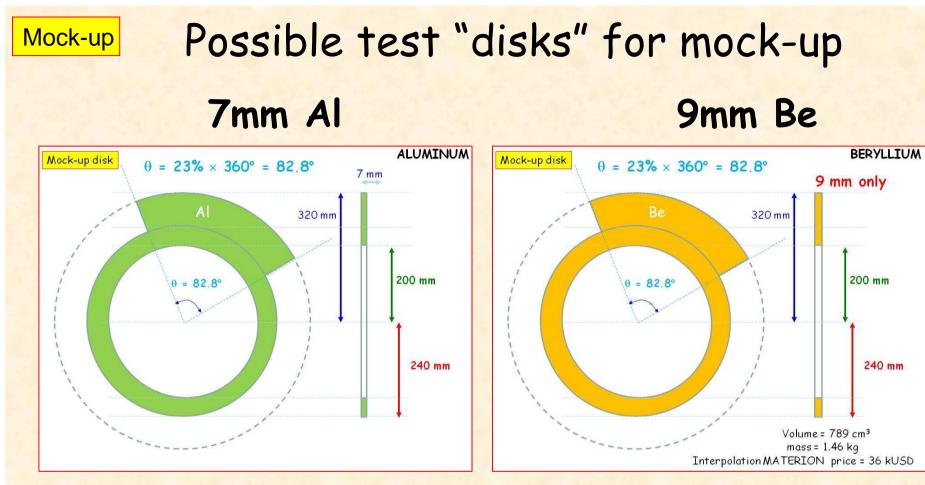
- MATERION (USA) (*)
- GOODFELLOWS (UK) (**)
- Kazakhstan (prices not quoted officially)

(*) prices refer to I-70-H Grade Beryllium (99%)

NOTES:

• the S-200-F Standard Grade Beryllium (98.5 %) would cost about 30% less


• the "nuclear standard" (Juan Esposito) S-65 Grade Beryllium (also 99%) would cost significantly more.


(**) 99% Be

Cost o	f Be
--------	------

МАТ	ERION prices of original s	hapes	density Be (g/cm ³)	volume (cm³)	mass (kg)	price/kg
	thickness (mm)	price (USD)	1,85			
	4	38,969		351	0,65	60,0
	8	34,555		701	1,30	26,6
interpolation	9	36,093		789	1,46	24,7
interpolation	10	37,632		877	1,62	23,2
	12	40,708		1052	1,95	20,9
interpolation	17	47,653		1490	2,76	17,3
	24	57,377		2104	3,89	14,7
	26	60,853		2279	4,22	14,4

Note: The Kazakhstan prices are not quoted here. The representative estimates are about 17-20 kUSD/kg, but as of today it is not clear for what thickness.

36000 USD

Commercially available (ADVENT): $5mm \times 300mm \times 300mm$

• 99.5% £ 100 1 piece

• 99.999% £ 1943 1 piece

Al (99.5%) costs << Be

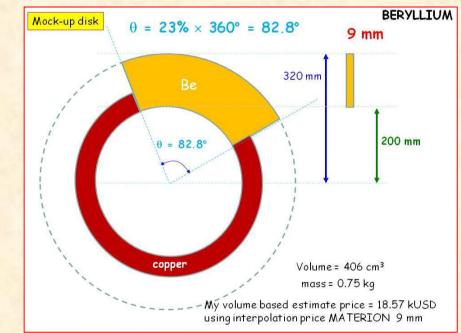
A possibility to reduce cost of Be disk for the final prototype.

Needs to be investigated in 2014 with calculations and tested with the mock-up.

 BERYLLIUM

 0 = 23% × 360° = 82.8°
 9 mm only

 0 = 82.8°
 9 mm only


 0 = 82.8°
 1200 mm

 0 = 82.8°
 200 mm

 0 = 82.8°
 200 mm

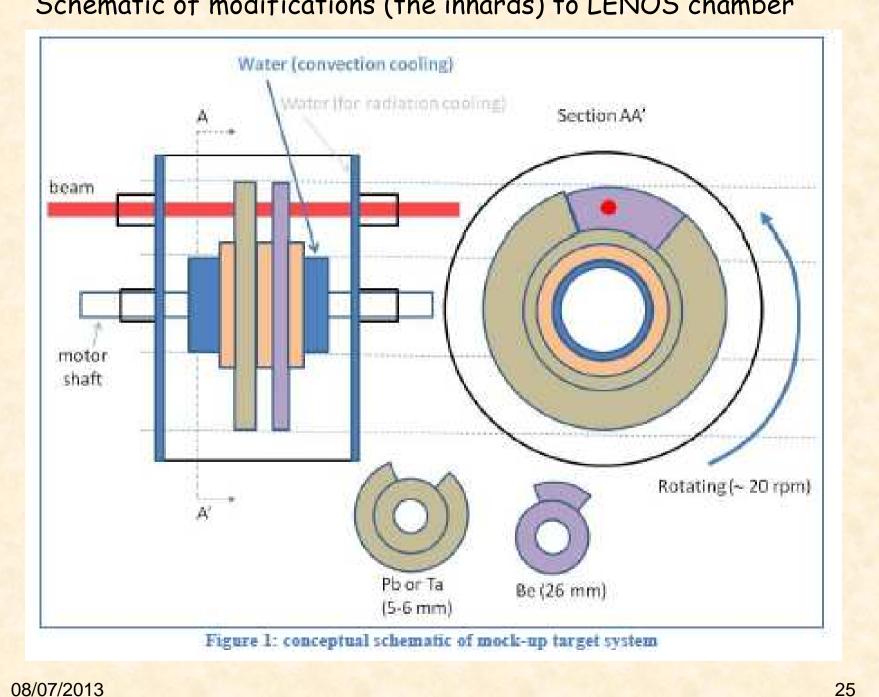
 0 = 82.8°
 1200 mm

"sector"

Sector costs ~ 50% less than disk

New Plans 2014

Power dissipation experiments with Al 7mm thick "disk"
 ... and with Al 7mm "sector"


- 3. power dissipation studies and optimization might suggest changing inner and outer diameters of the disks/sectors
- 4. NOTE: protons are not stopped. Must perform detailed simulations to couple the final target prototype with bending magnet and beam dump of the facility (that need to be designed in concert) while preserving atmospheric-like energy spectrum. Must optimize the thickness of the Be and Pb (or Ta).

Ordering expensive Be target is on HOLD until final shape is completely defined.

	ACTIVITY 2013-2014-2015
Jan-April 2013	Design mock-up (modifications to existing LENOS chamber)
Μαγ	Executive drawings ready
July-August	ANSYS thermal-mechanical calculations (nominal target thicknesses)
July-September	Simulations and study of coupling of target with magnet and beam-dump system of LNL facility. Conference UCANS 2013
October	Evaluation and modifications, if any. Order of chamber parts and purchase of aluminum test disk
November	Construction
December	Delivery, vacuum tests and static tests (induction coil)
January 2014	Preparation Beam tests,
February-June	Beams tests at various accelerators
June-early September	Analysis and evaluation of results
Mid September- October	Conferences (UCANS 2014, RADECS)
November	Tender for final Be disk
2015	Purchase of Be disk. High power test and measurement of neutron spectrum (at iThemba: missioni estere + other funds)
08/07/2013	22

Richieste 2	014-2015		NEUTARGS PADO	VA	2014-2015	
C LO TE AL			2014		2015	Pd
2014: Alumin test disks al	2014: Aluminum test disks and final chamber (no Be). chamber in 2015		Nazionali: PD-LNL, riunioni, thermal mechanical tests at LENA and JRC using Al disk	Зk	Nazionali: PD-LNL, riunioni, thermal mechanical tests at JRC using final Be disk	2k
test distriction chamber (no Final Be in			Esteri : congressi (UCANS, RADECS)	3k	Esteri : congressi, misure lab esteri	4k
Richieste sezione 2014: Officina meccanica: 1 m.u. Progettazione meccanica: 3 m.u.		Cons.	 realistic test AI (99.5%) disk and sector 7 mm definitive Pb 208 (99.9%) ingot ancillary parts and mechanics setup for final test at JRC 	2k 3k 2k 5k	• <i>final</i> Be sector or disk (26 mm thick) machined and nuclear-grade	40- 80k
Asked/assigned PA	DOVA 2013		total consumables	12k	total consumables	40-
Missions Internal	4→ 2.5					80k
Missions foreign	2→ 2	Invent.	• motor	2k 12k		
consumables	15→ <mark>5</mark>		 definitive chamber (without disks) 			
inventory	0		total invent.	14k	total invent.	
total	21→ 9.5	totale	32 kEuro		46-86 kEuro	

Extra slides

Schematic of modifications (the innards) to LENOS chamber

PREVENTIVO GLOBALE DI SPESA PER L'ANNO 2013

Struttura		A carico dell'I.N.F.N.														
Suutura	interno	estero	consumo	trasporti	manutenzione	inventario	licenze-SW	apparati	spservizi	TOTALI						
LNL	4.00	2.00	23.00			30.00				59.00						
PD	4.00	2.00	15.00							21.00						
PV	1.00							10.00	5.00	16.00						
Totali	9.00	4.00	38.00			30.00		10.00	5.00	96.00						

Mod. EC/EN 4

Bilancio 2013 > Globale > Gruppo V > Esperimento NEUTARGS > Riassuntivo assegnazioni

(a cura del responsabil

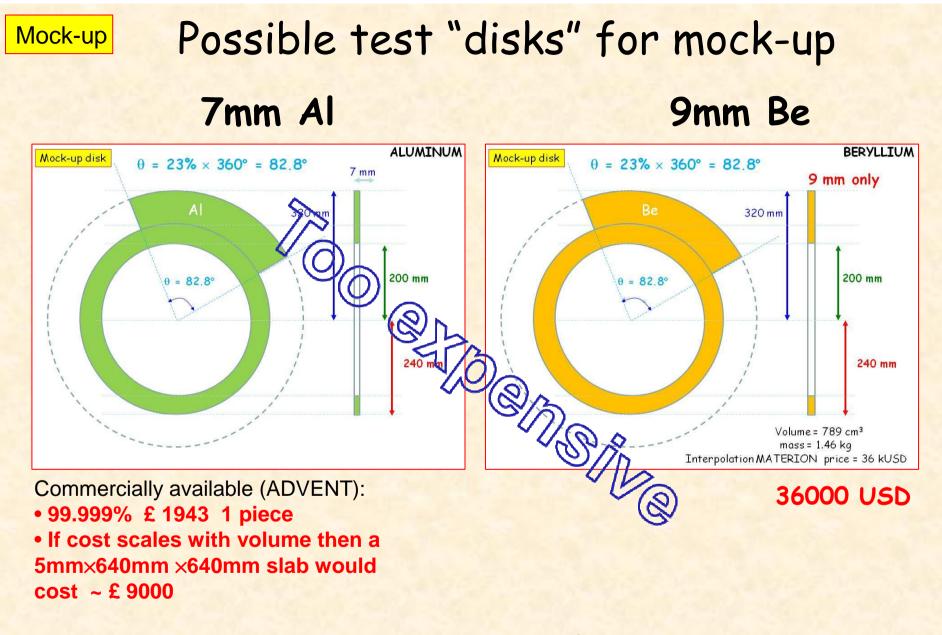
INFN

Sez. & Suf.	MI		ME		ON	SE	M	T	RA	F	UB 🛛		MAN	a ui	INV		APP		LIC-S	W	SPS	SERVE	Zi	TOT	ALE
062 0 001.	Sj Dot. Am	s s	Det. Ant.	Sj	Dot. Ant.	Sj Det	Ant.	S D	et. Ant.	STD	lot. Ant	. S	Dot. Ant		Dot Ant		Sj Det.	Ant.	Sj Dot	Ant	Si	Det.	Anti	Sic	Dot. An
LNL	4 0 2.5	2.0		23.0 4.0	11.0									30.0 0.0										59 6.5	1
D I	4.0	2.0 2.0		15.0 5.0																				21 9.5	
V	1.0															10.0	8 80 G				5.0 5.0			16 11.0	
	9	4	4	38	38		0		0		1		Ó	30	30	10		10		0	5		5	96 0	9
TOTALE	6 0	2	0 0	9	0 0									Q	0 0	5	0	0			5	0	0	27	0.0 0.
),	61	J	2.0	4	9.0		0.0		0.0		0 0		0.0	£	0.0			5.0		0.0			5.0		27

	2013		2014		2015				
Viaggi	Nazionali: PD-LNL, riunioni, thernal-mechanical tests at CN and LENA	4k	Nazionali: PD-LNL, riunioni	2k	Nazionali: PD-LNL, riunioni, thermal mechanical tests at LENA	4k			
	Esteri: congressi	2k	Esteri: congressi	2k	Esteri: congressi	2k			
Cons.	 Be test disk Pb test disk Ta test disk ancillary parts and mechanics 	5k 1k 2k 1k	 definitive Be (machinand nuclear-grade) definitive Pb ancillary parts and mechanics 	ined 20k 3k 5k	 cooling system setup for final test at LENA 	15k 5k			
	 cooling system for test disks setup for test at CN and LENA 	3k 3k			entivi 2013-2015 esentati 2012				
	total consumables	15k	total consumat	oles 28k	total consumables	20k			
Invent.			• motor	2k					
	total invent.		total invent.	2k	total invent.				
totale	21 kEuro		34 kEu	ro	26 kEuro				

To evaluate the feasibility of the proposed target system we need a realistic mock-up. Indeed the power dissipation of the proposed target occurs in three steps:

- the beam spot is off-axis and, as the target is rotating, the power is effectively deposited in a peripheric circular ring;
- 2) the heat is then conducted radially inwards towards the axis of rotation
- 3) the heat is finally carried away by flowing water (forced convection).


While the first two can be reliably simulated, the third step cannot. The heat-transfer coefficient h of forced convection is not a thermal property, as is thermal conductivity, so one cannot look up the value in a table of properties¹. For most situations of practical interest h must be determined experimentally; the determination of h is indeed the primary task of experiments in a forced convective system. Once h has been, the performance of a cooling system can be predicted². In order to determine an experimental value for h, three primary properties of the fluid must be determined: temperature, conductivity, and velocity. For most applications, the heat transfer coefficient will be strongly coupled with fluid velocity.

To furnish pertinent information in order to evaluate the proposed target scheme and guide us towards the final design, the mock-up target system must be realistic. For this purpose we have decided to modify an existing chamber system. The high cost of Beryllium will guide the design of the targets.

² The determination of the heat transfer coefficient h is specific to each geometry and flow pattern. Standard experiments for determining h are done as follows:

- 1. Specify the heat transfer system and flow pattern realistically.
- 2. Evaluate the power dQ/dt (W) on the target.
- 3. Measure the temperature of the fluid flow to determine the fluid properties.
- 4. Determine the velocity of the fluid flow.
- 5. Determine the surface temperature of the target
- 6. Calculate the area A through which the heat is being transferred.
- 7. Determine h from the formula $dQ/dt = hA\Delta T$

¹ Only when simple geometries and laminar flow conditions are involved, the heat-transfer coefficient can be determined analytically.

Al costs ~ 1/2 Be