

Neutron spectrometry from eV to GeV at neutron beam-lines: the NESCOFI@BTF project

R. Bedogni¹, J.M. Gomez-Ros^{1,2}, D. Bortot^{1,3}, A. Pola³, M.V. Introini³, A. Esposito¹, A. Gentile¹, G. Mazzitelli¹, B. Buonomo¹

¹ INFN – LNF Frascati (Italy)
 ² CIEMAT Madrid (Spain)
 ³ Politecnico di Milano (Italy)

Broad energy interval neutron spectrometry at beam-lines

No single-device instrument exists to perform a complete energy range spectrometry (eV - GeV).

To date, the only spectrometric technique able to provide all energy component is the Extended Range Bonner Sphere spectrometer

Limitations:

- time consuming irradiation sessions
 - poor energy resolution (partially compensated with a-priori information taken from MC simulations)

ERBSS spectrometry at Vesuvio (ISIS)

NESCOFI@BTF (2011-2013)

Goal

Providing devices for "real-time" spectrometry of neutron producing facilities over the whole energy interval of production (eV - GeV) with similar measurement performance as the Bonner spheres.

Condensing the characteristics of a BSS in TWO single moderator devices embedding multiple active thermal neutron detectors: SP² Spectrometer with isotropic response CYSP Directional spectrometer

Fields of application

Research accelerators, industry, medical, aerospace, homeland security, cosmic rays measurements

Year "one" (2011)

(3)

2011

- (1) Theoretical design of SP² and CYSP, response matrix calculation (MCNPX 2.6)
- (2) Manufacturing an SP² prototype operating with passive detectors (Dysprosium activation foils, only for response verification purposes

Experimental verification of the response matrix with quasi mono-energetic neutron fields (ERINDA program

Year "two" (2012)

Setting up active TNDs and dedicated acquisition system with following constraints:

- (1) Miniaturization (≈1 cm)
- (2) Sensitivity such to allow responding from μ Sv/h to Sv/h
- (3) Excellent photon rejection
- (4) Low-cost (31 TNDs in a single spherical device)

Two types of TNDs (different levels of cost/sensitivity):

TNPD pulse detector (~0.04 cm²), producing a PHD

TNRD rate detector, giving a DC voltage level that is proportional to the thermal neutron fluence rate. Lowest measurable thermal neutron flux \approx tens cm⁻² s⁻¹

Year "three" (2013)

Manufacturing and testing the final spectrometers equipped with active TNDs.

State of art

(1) CYSP was fabricated and tested at the INFN-LNF with an Am-Be source. A more exhaustive testing campaign with quasi mono-energetic neutron fields is planned.

(2) The active SP² is under fabrication.

The SPherical SPectrometer SP²

- Thirty-one thermal neutron detectors along three axes of a 25 cm sphere.
- Positions: radius 0.0 (centre), 5.5, 7.5, 9.5, 11 and 12.5 cm (external)
- Response defined as average reading of detectors at the same radius
- An internal 1 cm thick lead shell (3.5 to 4.5 cm) to enhance high-Energy response
- Isotropic response for practical purposes
 0.35

Response matrix verification (PTB, 144 keV to 14.8 MeV)

Tests at different mono-chromatic energies performed with Dy activation foils. Overall uncertainty estimated as ±3%

Ciema

The CYlindrical SPectrometer CYSP

- Seven TNDs along the axis
- Spectral resolution and lateral rejection
- HPDE Collimator 50 cm diam x 30 cm h Hole diameter 16 cm, B-plastic lined
- Capsule for detectors: 20 cm diam, includes one cm lead disk (high-E)
- Air holes to increase deep response

CYSP equipped with active detectors (type TNPD)

B-plastic lateral protection

collimator capsule for detectors

> IRIDE photo-production workshop 10-11 June 2013

detectors

CYSP response matrix

Signal processing

Analog module 8 c designed within the project Eight channels (Bias regulator + Preamp +amp)

8 channel digitizer

Simultaneous acquisition of up to eight detectors (Labview based)

Testing the CYSP

- Am-Be calibrated source (2E+6 s⁻¹) in **intentionally high scattering** workplace
- Simultaneous acquisition from the seven detectors
- Count profile: simulated compared with experimental (st.dev. of ratios 2%)

Conclusions

- 1. Broad-energy interval neutron spectrometry at beam-lines can be performed "on-line" with similar performance as those of the ERBSS
- 2. Two prototypal single-moderator neutron spectrometers, called SP² and CYSP, were designed in the framework of the INFN project NESCOFI@BTF.
- 3. Testing phase done by the end of 2013.

