C-C400 Cave A measurment

Abstract

Parallel to FIRST beamtime at GSI in Cave C the usual biophysics dE/E setup was used to measure in Cave A with 400 MeV/u carbon on 5mm carbon target. The reason was, that it might be useful later and the setup was ready to run due to a beamtime before us. So this is just a short report what I can offer as results if somebody wants to use them and what I plan on doing with it.

Note:

Setup was optimized for different target, so the results for the carbon target are not as good as they could have been.

Measurement description

- Setup
 - 100*100*2mm BC400 start scintillator
 - hexagonal 9mm BC400 veto scintillator
 - hexagonal 140mm BaF_2 scintillator
- DAQ: Camac, MBS $\rightarrow \approx 500$ Hz max rate
- Trigger: BaF_2
- Techniques:
 - dE/E
 - inverse time-of-flight
- → Yield of different charges + energie spectra

Measurment schematic

- target: 5mm carbon (1,84 g/cm^2)
- angles measured:
 - 0,2,4,6,8 checked and usable
 - 15,20 not checked yet
- tof calibration done in beam 0 deg no target

Analysis

- 150k 200k usefull events per file
- charge id based on dE/E
 - typical events id'ed: > 95%
- typical time resolution ≈ +- 500 ps
 - with walk correction applied
- no neutron spectra due to irradiation of the optical stand in Cave A -> charged particles are okay

Yields

Yields (comparison PHITS)

Yield [msr^-1 source^-1]	angle [deg]						
charge	experiment	1	2	3	4	5	6
	0	Х	Х	х	x	x	Х
cave a	2	1,77E-03	2,46E-03	8,90E-04	4,40E-04	5,88E-04	7,06E-04
	4	9,92E-04	7,17E-04	9,55E-05	3,11E-05	1,20E-05	5,37E-06
	6	7,90E-04	2,90E-04	1,77E-05	5,08E-06	5,87E-07	0,00E+00
	8	5,05E-04	7,93E-05	3,75E-06	2,80E-07	0,00E+00	0,00E+00
Yield [msr^-1 source^-1]	angle [deg]						
charge	phits	1	2	3	4	5	6
	0	1,30E-01	3,23E-02	2,40E-03	1,58E-03	3,02E-03	7,23E-01
	2	3,03E-03	2,38E-03	1,95E-04	1,18E-04	2,35E-04	1,26E-03
	4	1,44E-03	7,46E-04	4,53E-05	2,11E-05	1,13E-05	7,14E-06
	6	7,95E-04	1,56E-04	2,72E-06	9,07E-07	3,78E-08	7,56E-08
	8	4.74F-04	2.48F-05	1.25F-07	0.00F+00	0.00F+00	0.00F+00

Note:

- mean measurement error ≈ 2%
- leading-Z analysis can lead to underestimation of lower charges especially for small angles
- PHITS simulation with simplified

Differential cross section

cross section [sr^-1 source^-1 barn]	angle [deg]						
charge	experiment	1	2	3	4	5	6
	0	х	Х	x	x	x	8,35E+03
cave a	2	1,92E+01	2,67E+01	9,65E+00	4,77E+00	6,37E+00	7,65E+00
	4	1,08E+01	7,77E+00	1,04E+00	3,37E-01	1,30E-01	5,82E-02
	6	8,56E+00	3,14E+00	1,92E-01	5,51E-02	6,36E-03	0,00E+00
	8	5,47E+00	8,60E-01	4,06E-02	3,04E-03	0,00E+00	0,00E+00
cross section [sr^-1 source^-1 barn]	angle [deg]						
charge	experiment	1	2	3	4	5	6
	5	7,63E+00	4,22E+00	2,20E-01	5,40E-02	0,00E+00	0,00E+00

4,17E+00

10

Note:

zeitlin 2008 et al

Zeitlin et al. 400 MeV/u carbon on 5mm carbon target with density 2 g/cm²

6,10E-01

1,10E-02

3,00E-03

0,00E+00

0,00E+00

Status

- Analysis of 0,2,4,6,8
 - finished for Yields finished
 - for Energy have to still do the walk correction
- comparison with monte carlo
 - PHITS done
 - Geant4 is running for all angles
 - FLUKA simulations?

What to do with it?

- get a feeling how good the estimates of monte carlo are with our target –
 beam combination?
- comparison possible by putting solid angle constraints on the FIRST setup using the VTX?
- other ideas?