TOP: spazi per gli italiani

TOP

- Calibration system
 - Laser and fiber optics
 - Laser operation system
 - Online calibration
- Environment monitor
- Software work collaborating with Ljubljana
 - Convertion from raw data to reconstruction level
 - Applying calibration constant
 - Alignment scheme
 - Database handling
- Power supply
- Cooling system

ARICH

- mirror system (planar mirrors at the edge of acceptance)
- low voltage power supplies for read-out electronics
- quality assessment (cross check) of (a few) selected HAPD

Inoltre:

- nuovi MCPPMT: Atomic Layer Deposition (ALD)

Ωd

right-angle prism prism surface) to

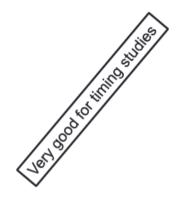
EOM Workshop 20-21 Marzo

- nuovi MCPPMT: Atomic Layer Deposition (ALD)
- cookies vs optical grease per contatto ottico
- spazi per cablaggi segnali, HV, calibrazioni
- disegno della frontend box, del cooling, etc
- fiber calibration per l'allineamento temporale

Phone conferences (TO+BA+PD): 26/3, 11/4 (con Krizan)

- a PD e BA c'e' sia knowhow sia attrezzatura per collaborare al quality control dei PMT, se i nuovi possono uscire dal Giappone.
 - trattative Nagoya-Hamamatsu per scambio PMT
 - a KEK stano pensando a turni doppi x ricuperare
 - Peter Krizan vede bene tests ausiliari in Italia
 - Full readout chain in Italia: autunno?
 - PD: 3 possibili entries ex CMS, Legnaro: 1T magnet
 - opportunita' ARICH: specchi per ricuperare luce sui bordi
 - urgent need: skilled techs per assemblaggio barre (a KEK)

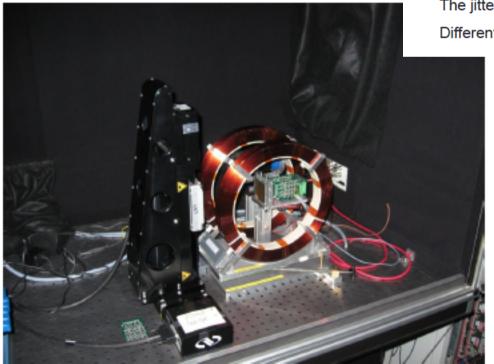
INFN Bari


Ottimo set up: si puo rapidamente contribuire a quality control e tests di timing calibration

Laser *PiLas*

1 MHz PiLas (single shot to 1 MHz)

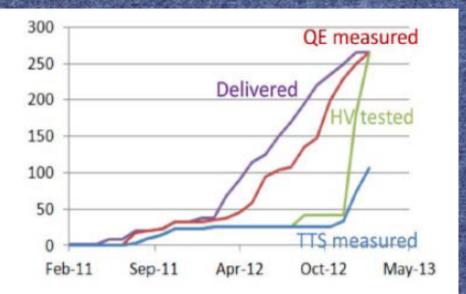
PiL	wavelength (nm)	tolerance (nm)	spectral width (nm)	pulse width (ps) ⁽²⁾	peak power in collimated beam (mW) ⁽¹⁾
PiL037SPS	375	± 10	₹7	< 50	> 400
PiL040	408	± 10	₹7	< 45(<25 ⁽²⁾)	> 400 (>1W ⁽¹⁾)
PIL043	440	± 10	< 7	< 60	⇒ 200
PIL047	473	± 10	< 7	< 60	⇒ 200
	PiL PiL037 SPS PiL040 PiL043 PiL047	PIL037SPS 375 PIL040 408 PIL043 440	PILO37SPS 375 ± 10 PILO40 408 ± 10 PILO43 440 ± 10	PILO37SPS 375 ±10 <7 PILO40 408 ±10 <7 PILO43 440 ±10 <7	PIL (nm) (nm) (nm) (ps) ²) PIL037SPS 375 ± 10 < 7 < 50 PIL040 408 ± 10 < 7 < 45(<25(²³)) PIL043 440 ± 10 < 7 < 80

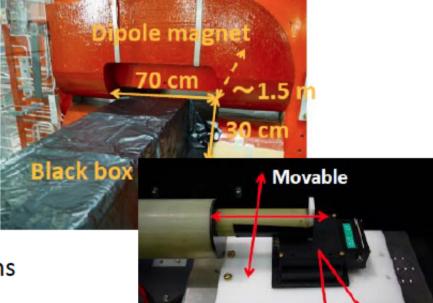


EIG1000D with PiL063SM (fiber option)

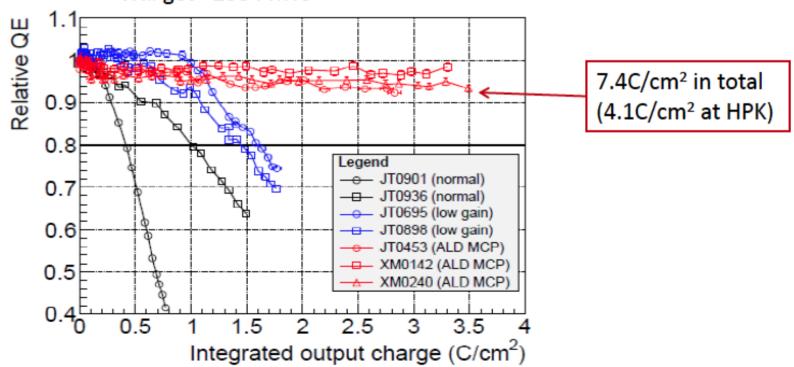
The jitter between electrical trigger and optical pulse is about 3 ps - 4 ps.

Different kind of fiber collimator and mechanical light attenuator


Positioning


3 linear stage with 1µm positioning accuracy

TOP: MCPPMT characterization

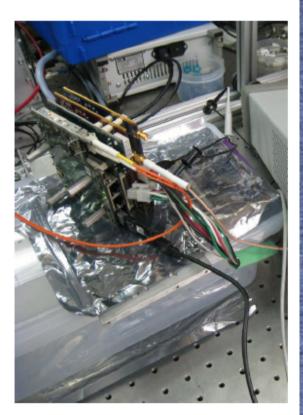

- Production is stable.
 - ~20PMTs/month
 - 265 PMTs delivered
- Acceptance test at Nagoya
 - QE measurement; OK, all passed
 - 3 PMTs/day
 - HV test; OK, 2 bad PMTs found
 - 8 PMTs/day
 - TTS and Gain; OK, but delayed
 - 107 checked/passed
 - 4 PMTs/day, We can catch up.
- Test in magnetic field at KEK
 - Measurement system was built.
 - Will check all PMTs within 6 months

TOP: cambiare i MCPPMT?

- Photocathode lifetime can be improved.
 - Will operate in lower gain (5x10⁵) for normal PMT
 - ALD MCP-PMT prototype shows very long lifetime.
 - Keep 90% efficiency at least >3C/cm² (7.4C/cm² for one PMT)
 - Will change to produce ALD MCP-PMT from next batch
 - Will get ~200 PMTs

- CRT in March-April, beam test in May 9-18 at LEPS
- Almost final optical configuration
 - Using expansion block
- IRS3B ASIC readout
 - First priority: Need the performance test for DOE review
 - Fabrication in progress
 - Test with MCP-PMT and laser soon in March
 - Backup readout
 - CFD readout with 4ch merger
 - Test module production in parallel
 - For beam test, VME TDC used at previous beam test

Evaluate the performance of full-size TOP counter

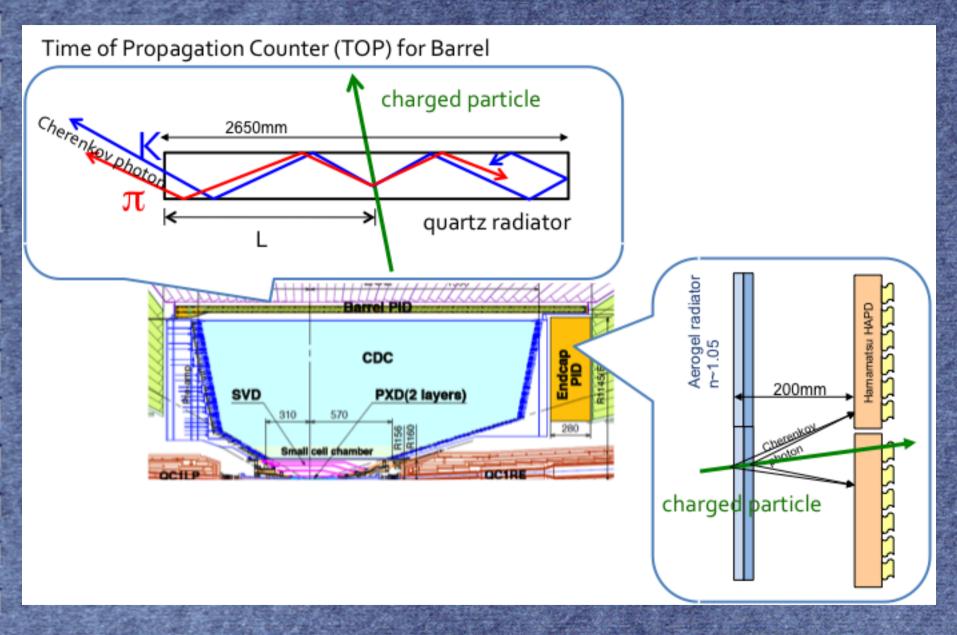

Partecipazione di U.Tamponi ai turni di test e all'analisi dati

Many Integration Milestones

- Automated calibration and acquisition scripts
- Much progress in Region of Interest, FINESSE,
 COPPER CPU DAQ codes
- Collected data mirrored on kekcc, PNNL and Hawaii servers for prompt analysis
- Scripts to systematically scan injected signals through all channels, sampling windows very helpful to identify problems
- Resolving these found problems last major task

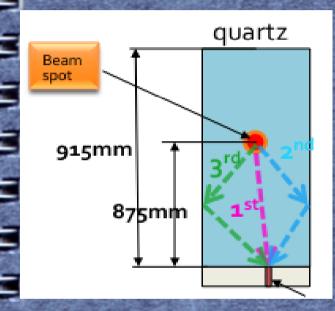
Remaining Issues

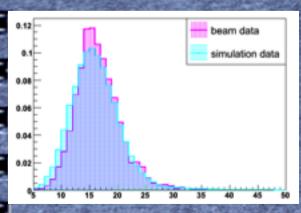
- Version 3 firmware integration largely successful, however there remains sampling → storage timing alignment adjustments that are still needed
- Until sort out this issue, data quality is compromised: parallel testing at KEK, Hawaii
 - Focus in Fuji Hall on getting good single-photon laser data
 - In parallel, understand storage timing in Hawaii
- Time is very tight and many are working extremely hard

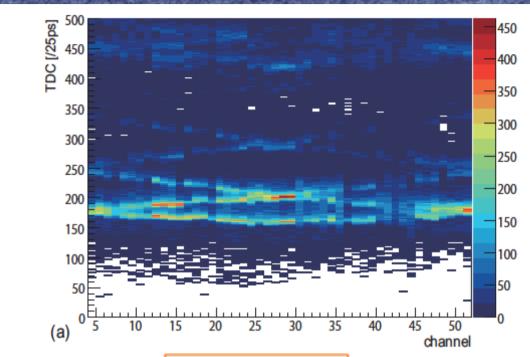

Summary

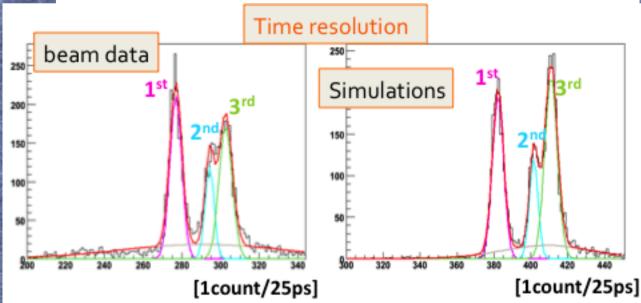
- Critical to resolve last of timing/configuration issues so that can start mass production of calibration constants/data logging
- Shipment date to LEPS is fixed @ May 2
- Must complete laser testing, start CRT test ASAP!
- Clear plan for final opto-electro-mechanics (summary report available soon)
- DOE Review schedule predicated on good May beam test data. Tools being developed now will speed that process, but much work yet to be done...

Belle-II: commitments


Group	Institutes		
IR	KEK, Tohoku, Tokyo,		
PXD	DEPFET collaboration, KEK, SOI group,		
SVD	KEK, Vienna, Krakow, Tohoku, Tata,		
CDC	KEK, Osaka-city, NPC, Taiwan,		
B-PID	Nagoya, KEK, Hawaii, Cincinnati, Ljubljana		
E-PID	KEK, Ljubljana, Tokyo metropolitan, Toho, Nagoya		
ECL	BINP, KEK, Taiwan, Nara, Korea, Hanyang, Seoul,		
KLM	ITEP, VPI, KEK, Osaka-city, Hawaii, Indiana, USTC(?),		
TRG	KEK, Korea, Hanyang,		
DAQ	KEK, IHEP,		
STR	KEK		
Soft/Comp	KEK, Karlsruhe, Melbourne, KISTI, Prague, Ljubljana, Krakow, MPI, IHEP,		


Particle ID




TOP challenge

Pattern recognition a 3 dimensioni: (x,y,t) Con risoluzione temporale ~ 50 ps

