

DARK MATTER IN GALAXIES

PAOLO SALUCCI

SISSA

Outline of the Review

Dark Matter is main protagonist in the Universe

This review focus: Dark Matter in Galaxies

The concept of Dark Matter in virialized objects Dark Matter in Spirals, Ellipticals, dSphs Dark and Luminous Matter in galaxies. Global properties. Phenomenology of the mass distribution in Galaxies. Implications for Direct and Indirect Searches

**3 MAJOR TYPES
OF GALAXIES**

The Realm of Galaxies

The range of galaxies in magnitudes, types and central surface densities : 15 mag, 4 types, 16 mag arsec-2

Central surface brightness vs galaxy magnitude

Spirals : stellar disk +bulge +HI disk

The distribution of luminous matter :

Ellipticals & dwarfs E: stellar spheroid

What is Dark Matter ?

In a galaxy, the radial profile of the gravitating matter M(r) does not match that of the luminous component $M_L(r)$.

A MASSIVE DARK COMPONENT is then introduced to account for the disagreement:

Its profile $M_H(r)$ must obey:

$$
\frac{d\log M(r)}{d\log r} = \frac{M_L(r)}{M(r)}\frac{d\log M_L(r)}{d\log r} + \frac{M_H(r)}{M(r)}\frac{d\log M_H(r)}{d\log r}
$$

M(r), M_L(r), dlog M_L(r)/dlog r **observed**

The DM phenomenon can be investigated only if we **accurately** meausure the distribution of:

Luminous matter $M_L(r)$. Gravitating matter M(r)

THEORY AND SIMULATIONS

ΛCDM Dark Matter Density Profiles from N-body simulations

The density of virialized DM halos of any mass is empirically described at all times by an Universal profile (Navarro+96, 97, NFW).

$$
\rho_{NFW}(r) = \delta \rho_c \frac{r_s}{r} \frac{1}{(1 + r/r_s)^2}
$$

$$
c = \frac{R_{vir}}{r_s} \quad R_{vir} = 260 \left(\frac{M_{vir}}{10^{12} M_{\odot}}\right)^{1/3} kpc
$$

More massive halos and those formed earlier have larger overdensities Today mean halo density inside R_{vir} = 100 ϱ_c

Klypin, 2010

Aquarius N-Body simulations, highest mass resolution to date. Density distribution: the Einasto Law indistinguishable by NFW Navarro et al +10

density density circular velocity

How halos form and evolve

SPIRALS

Stellar Disks

M33 disk very smooth, truncated at 4 scale-lengths

NGC 300 exponential disk for at least 10 scale-lengths

R^D lenght scale of the disk

ESO PR Photo 18a/02 (7 August 2002

Bland-Hawthorn et al 2005

Gas surface densities

HI

Flattish radial distribution Deficiency in the centre Extended to $(8 - 40) R_D$

 H_2

Follows the stellar disk Negligible

Circular velocities from spectroscopy

- Optical emission lines $(H\alpha, Na)$
- Neutral hydrogen (HI)-carbon monoxide (CO)

ROTATION CURVES

artist impression

Symmetric circular rotation of a disk characterized by

- Sky coordinates of the galaxy centre
- Systemic velocity *Vsys*
- Circular velocity *V(R)*
- Inclination angle

HIGH QUALITY ROTATION CURVE UGC2405

Early discovery from optical and HI RCs

RC DO NOT FOLLOWS THE DISK VELOCIT Y PROFILE

disk RC profiles of different lenght scale and amplitude

MASS DISCREPANCY AT OUTER RADII

HI rotation curves beyond the optical image

Evidence for a Mass Discrepancy in Galaxies

The distribution of gravitating matter, unlike the luminous one, is luminosity dependent.

Tully-Fisher relation exists at local level (radii Rⁱ)

Rotation Curves

TYPICAL INDIVIDUAL RCs OF INCREASING LUMINOSITY

The Cosmic Variance of V measured in galaxies of same luminosity L at the same radius x=R/R^D is negligible compared to the variations that V shows as x and L varies.

The Universal Rotation Curve

Universal Rotation Curve out to the Virial Radius

Method: inner kinematics + independent determinations of halo virial masses

Virial masses M_h of halos around galaxies with stellar mass M_{STAR} (or luminosity L) are obtained

- directly by weak-lensing analysis *(left)*
- indirectly by correlating *dN/dL* with theoretical DM halo *dN/dM (right)*

The Concept of the Universal Rotation Curve (URC) **Every** RC can be represented by: $V(x,L)$ x=R/R_D

-> Movie 2

Rotation curve analysis **From data to mass models**

 $V^2(R) = V_{halo}^2(R) + V_{HI}^2(R) + V_{disk}^2(R)$ observations = model➲ **from I-band photometry** V_{HI}^2 from HI observations
 V_{halo}^2 different choices for the ➲ **different choices for the DM halo density**

Dark halos with central constant density (Burkert, Isothermal)

MASS MODELLING RESULTS

Dark Halo Scaling Laws in Spirals

The halo central surface density $\rho_0 r_0$: constant in Spirals

The distribution of DM around spirals

Using individual galaxies **Gentile+ 2004, de Blok+ 2008 Kuzio de Naray+ 2008, Oh+ 2008, Spano+ 2008, Trachternach+ 2008, Donato+,2009** A detailed investigation: high quality data and model independent analysis

Galaxy Dynamics in THINGS - The HI Nearby Galaxy Survey

General results from several samples e.g. THINGS

- **- Non-circular motions are small.**
- **- DM halo spherical**
	- **- ISO/Burkert halos much more preferred over NFW**
	- **Tri-axiality and non-circular motions cannot explain the CDM/NFW cusp/core discrepancy**

SPIRALS: WHAT WE KNOW

AN UNIVERSAL CURVE REPRESENTS ALL INDIVIDUAL RCs MORE PROPORTION OF DARK MATTER IN SMALLER SYSTEMS THE RADIUS IN WHICH THE DM SETS IN IS A FUNCTION OF LUMINOSITY THE MASS PROFILE AT LARGER RADII IS COMPATIBLE WITH NFW DARK HALO DENSITY SHOWS A CENTRAL CORE OF SIZE 2 R_D

ELLIPTICALS

The Stellar Spheroid

Surface brightness of ellipticals follows a Sersic (de Vaucouleurs) law

$$
I(R) = I_e e^{-b_n [(R/R_e)^{1/n} - 1]}
$$

Re : the radius enclosing half of the projected light.

By deprojecting I(R) we obtain the luminosity density *j(r)*:

Modelling Ellipticals

Measure the light profile = stellar mass profile $(M*/L)^{-1}$

Derive the total mass profile M(r) from:

Dispersion velocities of stars or of Planetary Nebulae

X-ray properties of the emitting hot gas

Weak and/or strong lensing data

Disentangle M(r) into its dark and the stellar components

In ellipticals gravity is balanced by pressure gradients -> Jeans Equation

Kinematics of ellipticals: Jeans modelling of radial, projected and aperture velocity dispersions

$$
M(r) = M_{sph}(r) + M_h(r).
$$

\n
$$
\sigma_r^2(r) = \frac{G}{\rho_{sph}(r)} \int_r^{\infty} \frac{\rho_{sph}(r')M(r')}{r'^2} dr'
$$
 radial
\n
$$
\sigma_P^2(R) = \frac{2}{I(R)} \int_R^{\infty} \frac{\rho_{sph}(r) \sigma_r^2(r) r}{\sqrt{r^2 - R^2}} dr
$$
 projected
\n
$$
\sigma_A^2(R_A) = \frac{2\pi}{L(R_A)} \int_0^{R_A} \sigma_P^2(R) I(R) R dR
$$
aperture 10
\n
$$
L(R) = 2\pi \int I(R) R dR
$$

-Rotation is not always negligible -6 . (R) is a direct probe of grav potential but it is not observable -6_p (R) is observable when individual star measures are available $-\sigma_{AP}$ is the standard observable

measure $I(R)$, $\sigma_{\rm p}(R)$ derive M_h(r), M_{sph}(r) V $\qquad \qquad \sigma_{\rm p}$ -10 -10 Ω 10 20 -10 10 20 Ω grcsec arcsec -226 v [km/s] 226 134 σ [km/s] 229 SAURON data of N 2974

Warning: mass decomposition of dispersion velocities not unique.

Exemple: NFW halo + Sersic spheroid. Orbit isotropy.

The spheroid determines the values of the aperture dispersion velocity

The contribution of the DM halo to the central dispersion velocity is lesser than 100 km/s

Inside Re the dark matter profile is intrinsically unresolvable

The Fundamental Plane: the **values** of the central dispersion velocity, half light radius and central surface brightness are strongly related

Stellar populations among E

The Planetary Nebula Spectrograph $\overline{\mathsf{PN}}$.S \geqslant

Extended kinematics of elliptical galaxies obtained with the Planetary Nebula Spectrograph

NGC 3379 **190 PNS**

PN data

Jeans modelling of PN data with a stellar spheroid \div NFW dark halo

Ellipticals, Cored and cuspy DM JEANS ANALYSIS There exist big DM halos around profiles are both possible. MORE DATA

Mass profiles from weak lensing

 $\Sigma_{\rm c}$

Lensing equation for the observed tangential shear

 η D_{ls} Source plane $\langle \, \rangle$ $\overline{\mathsf{D}}_{\mathsf{ds}}D_{\rho s}$, $\hat{\alpha}$ D_{s} ξ IJ $^{\prime}$ ol Lens plane \overrightarrow{D}_{d} $\frac{1}{2}\Theta$ ΤĖ *X* Observer

$$
\gamma_t \rangle \equiv \frac{\overline{\Sigma}(R) - \Sigma(R)}{\Sigma_c(R)} \qquad \qquad \bar{\Sigma} = \frac{M(R)}{4\pi R^2}
$$

$$
R = \theta D_{ol}
$$

$$
= \frac{c^2}{4\pi G} \frac{D_{\text{os}}}{D_{\text{ol}} D_{\text{ls}}}
$$

$$
R = \theta D_{ol}
$$

e.g. Schneider, 1996

MODELLING WEAK LENSING SIGNALS

Halo and baryonic masses correlate.

OUTER DM HALOS: NFW/BURKERT PROFILE FIT THEM EQUALLY WELL

Donato et al 2009

Weak and strong lensing SLACS: Gavazzi et al. 2007)

strong lensing measures the total mass inside the Einstein ring

Inside REinst the total (spheroid + dark halo) mass increase proportionally with radius

Inside REinst the total the fraction of dark matter is small

Mass Profiles from X-ray

Nigishita et al 2009

The mass in stars in galaxies

Stellar mass of a galaxy can be obtained via Stellar Population Synthesis Models by its colors and SED

Dynamical and photometric estimates of the galaxy stellar mass agree

ELLIPTICALS: WHAT WE KNOW

A LINK AMONG THE STRUCTURAL PROPERTIES OF STELLAR SPHEROID SMALL AMOUNT OF DM INSIDE R_E MASS PROFILE COMPATIBLE WITH NFW AND BURKERT DARK MATTER DIRECTLY TRACED OUT TO R_{VIR}

dSphs

Dwarf spheroidals: basic properties

The smallest objects in the Universe, benchmark for theory $L = 2 \times 10^3 L_{\odot} - 2 \times 10^7 L_{\odot}$ $\sigma_0 \sim 7 - 12 \,\mathrm{km \, s}^{-1}$ $r_0 \approx 130 - 500 \,\mathrm{pc}$

> **dSph show** large M_{grav}/L

Luminosities and sizes of Globular Clusters and dSph are different

Gilmore et al 2009

Kinematics of dSph

1983: Aaronson measured velocity dispersion of Draco based on observations of 3 carbon stars - M/L ~ 30 1997: First dispersion velocity profile of Fornax (Mateo) 2000+: Dispersion profiles of all dSphs measured using multi-object spectrographs

2010: full radial coverage in each dSph, with 1000 stars per galaxy

Dispersion velocity profiles

dSph dispersion profiles generally remain flat to large radii

Mass profiles of dSphs

$$
M(r)=-\frac{r^2}{G}\left(\frac{1}{\nu}\frac{\mathrm{d}\,\nu\sigma_r^2}{\mathrm{d}\,r}+2\,\frac{\beta\sigma_r^2}{r}\right)
$$

Jeans' models provide the most objective sample comparison

Jeans equation relates kinematics, light and underlying mass distribution

Make assumptions on the velocity anisotropy and then fit the dispersion profile

Gilmore et al 2007

Degeneracy between DM mass profile and velocity anisotropy

Cored and cusped halos with orbit anisotropy fit dispersion profiles equally well

dSphs cored halo model

halo central densities correlate with core radius in the same way as Spirals and Ellipticals

$$
\rho_0 = 10^{-23} \left(\frac{r_0}{1 kpc}\right)^{-1} g/cm^3
$$

Donato et al 2009

Global trend of dSph haloes

DSPH: WHAT WE KNOW

PROVE THE EXISTENCE OF DM HALOS OF 10¹⁰ MSUN AND ρ**⁰ =10- ²¹ g/cm³ DOMINATED BY DARK MATTER AT ANY RADIUS MASS PROFILE CONSISTENT WITH THE EXTRAPOLATION OF THE URC HINTS FOR THE PRESENCE OF A DENSITY CORE**

GALAXY HALOS: AN UNIFIED VISION

Universal Mass Distribution

Virial Halo Masses correlate with the Masses of the Stellar Component

An unique mass profile M^h (r) = G(r)

Walker+ 10

Mass-to-Light ratios at half light radius Re in virialized objects

Galaxies are increasingly DM dominated at lower and higher mass

DETECTING DARK MATTER

Principle of Direct Detection

Goodman and Witten: coherent scattering of WIMPs off nuclei (1985)

 $\sigma_{\chi N}$ probed to-date ~ 10⁻⁴⁴ cm²

What is measured (with different target nuclei and detectors) : energy of the recoiling nucleus What are the challenges: very small energy, very large backgrounds and very small rate

Summary

A very active and versatile field of research many hints to follow up, many promising experiments

INDIRECT SIGNATURES OF DM SPECIES

WIMP mutual annihilations of WIMPs in DM halos would produce, on Earth, an indirect signature in a flux of high energy cosmic rays or photons. Sources: galactic center, MW satellites, nearby galaxies, clusters.

FAKE ASTRO SIGNAL

FAKE ASTRO SIGNAL

Gamma ray flux on detector on Earth from DM annihilation in DM halos

E =photon energy ΔΨ=detector acceptance

- σ =annihilation cross section
- v =wimp velocity
- m =wimp mass
- B =branching ratio
- N =photon spectrum in a given channel

Strong dependence on specific DM halo density profile

DM particles annihilate into high-energy photons

40 GeV neutralino with $b\overline{b}$ annihilation channel

WHAT WE KNOW?

The distribution of DM in halos around galaxies shows a striking and complex phenomenology crucial to understand

The nature of dark matter and the galaxy formation process

Refined simulations should reproduce and the theory should explain:

a shallow DM inner density distribution, a central halo surface density independent of halo mass and a series of relationships between the latter and the i) central halo density, ii) baryonic mass, iii) half-mass baryonic radius and iv) baryonic central surface density

Theory, phenomenology, simulations, experiments are all bound to play a role in the search for dark matter and its cosmological role.

The mass discrepancy in galaxies is a complex function of radius, total baryonic mass, Hubble Type $\frac{M_{grav}}{M_b} \sim \frac{1 + \gamma_1(M_b,T) r^3}{1 + \gamma_2(M_b,T) r^2}$

Unlikely all this masks a new law of Gravity but certainly it is beyond the present ACDM predictive power This Presentation has been prepared by:

Paolo Salucci, Christiane Frigerio Martins, Andrea Lapi

with the scientific collaboration of:

Elena Aprile, Mariangela Bernardi, Albert Bosma, Erwin de Blok, Ken Freeman, Refael Gavazzi, Gianfranco Gentile, Gerry Gilmore, Uli Klein, Gary Mamon, Claudia Maraston, Nicola Napolitano, Pierre Salati, Chiara Tonini, Mark Wilkinson, Irina Yegorova.

with the support and encouragement of:

J. Bailin, P. Biermann, A. Bressan, L. Danese, C. Frenk, S. Leach , M. Roos, V. Rubin.

If you play it, it will be also yours!

If you deliver it, it will become yours!

Thanks to everyone!