Terrestrial Gamma-ray Flashes Studies with AGILE

Martino Marisaldi (INAF – IASF Bologna) on behalf of the AGILE Team

Serendipity at play

Time Since Trigger (msec

Terrestrial Gamma-ray Flashes

Credit: Alan Stonebraker

Observational breakthrough

TGF related publications (from ADS)

Operating TGF detectors

Torino 01/10/13

The AGILE payload

MCAL:

•30 CsI(TI) bars with Photodiode readout

- 1400 cm² geometrical area
- ~300 cm² effective area @ 1 MeV
- 330 keV 100 MeV energy range
 14% energy resolution FWHM @ 1.3 MeV
- 2 μs timing accuracy in photon-by-photon mode

 Clever, fully-programmable trigger logic on time scales from 8s to 16ms, 1ms and 300µs

The 2009 AGILE TGF sample

Average properties:

Number of counts = 17 +/- 5

Duration = (1.5 +/- 0.8) ms

Energy = (4.0 +/- 1.4) MeV

M . Marisaldi - HILITE 2013

Marisaldi et al., JGR, 2010,

Imaging TGFs in gamma rays

Search for GRID events in temporal coincidence with 119 MCAL TGFs detected between Jun. 2008 – Dec. 2009

13 GRID events within 2 ms from TGFs T0!

Beaming angle: TGF localization from space in γ-rays by AGILE GRID

TGF 12809-19 in details (2010 Oct. 16 20:44:55 UT)

Geographical distribution

Results published in Marisaldi et al., Phys. Rev. Letters 105, 128501 (2010)

Do GRID photons come directly from the production region?

events cannot be ignored

<3% probability to scatter above 40 km: the GRID photon tracks the source within the angular resolution

Implications for beaming angle and electric field orientation at the source

High energy photons track well the electric field orientation at the source A new tool to probe remotely the production site electric field

Cumulative spectrum

Results published in Tavani et al., Phys. Rev. Letters 106, 018501 (2011)

MCAL high energy calibration

M. Marisaldi - HILITE 2013 Giuliani et al., ApJL 708 (2010) L84

Toward a climatology of TGFs

D

- TGFs follow lightning distribution and ITCZ movement
- BUT with significant differences: TGF tend to peak at later storm phase (while lcs don't) and there is a geographical asymmetry.
- Peculiar subset of lightning?

Smith+2010, JGR

TGF-lightning correlation

0.68 correlation coefficient for global case BUT...

2D Kolmogorov Smirnov probability = 0.002 for TGFs to be drawn from the same distribution of lightning!

LIS-OTD high resolution full climatology available at http://thunder.msfc.nasa.gov/

TGF / lightning flash ratio

Fuschino+2011 GRL, confirmed by Briggs+2013 JGR

Continental region	1D KS Longitude P	1D KS Latitude P	2D KS P	TGF / flash ratio
America	0.34	0.45	0.13	1.5 10 ⁻⁴
Africa	0.17	0.14	0.03	6.0 10⁻⁵
South East Asia	0.95	0.78	0.87	7.5 10 ⁻⁵
AII_ Torino 01/10/13	0.002 M	. Marisaldi - HILITE 2013	0.002	7.8 10⁻⁵ 18

Possible effects on avionics

Tavani et al., NHESS 2013

Possible effects on avionics

Tavani et al., NHESS 2013

The AGILE 1st TGF catalog

308 TGFs with max energy <30 MeV in 3.5 years (Marisaldi+2013 JGR submitted)

Detection rate

Duration distribution

Dead time model

Intensity distribution

Cumulative energy spectrum

Multiple peaks

27

Correlation with WWLLN sferic waves

TGF rate surface density

TGFs above the equator

30

THANK YOU!

Credit: Alan Stonebraker

First AGILE TGF detections: Marisaldi et al., JGR 115, A00E13 (2010)

<u>TGF γ-ray localization:</u> Marisaldi et al., Phys Rev Lett 105, (2010)

<u>TGF high-energy spectrum:</u> Tavani et al., Phys Rev Lett 106, (2011)

AGILE TGFs & lightning activity: Fuschino et al., GRL 38, L14806(2011)

Possible TGF effects on avionics: Tavani et al., NHESS 13, (2013)

<u>1st AGILE TGF catalog:</u> Marisaldi et al., JGR submitted