Ningyu Liu

Department of Physics and Space Sciences Florida Institute of Technology Melbourne, FL 32901

HILITE 2013 Torino, Italy

- General Morphology
- Physical Mechanism of Sprites
- Large-Scale Modeling of Sprites
- Modeling of Sprite Streamers

First Image of Unusual Optical Flashes Above Thunderstorms

• This image was obtained serendipitously on July 5, 1989 during a test of a lowlight-level TV camera at the O'Brien Observatory of the University of Minnesota [*Franz et al.*, Science, 249, 48, 1990].

• The event was recorded on 4 July 1994 at 0400:20 UT during Sprites94 aircraft campaign [Sentman et al., Geophys. Res. Lett., 22, 10, 1205, 1995].

• Sprites often appear relatively homogeneous at their top but highly structured at their bottom [*Stenbaek-Nielsen et al.*, Geophys. Res. Lett., 27, 3829, 2000; *Pasko and Stenbaek-Nielsen*, Geophys. Res. Lett., 29, 10, L014241, 2002].

Sprites Recorded by ISUAL on FORMOSAT-2 Satellite [Mende et al., 2004]

• Dominant emission band systems from sprites:

Emission	Transition	Excitation Energy	Lifetime at	Quenching
Band System		Threshold (eV)	$70~\mathrm{km}$ Alt.	Alt. (km)
$1 PN_2$	$N_2(B^3\Pi_g) \rightarrow N_2(A^3\Sigma_u^+)$	~ 7.35	$5.4 \ \mu s$	~ 53
$2PN_2$	$N_2(C^3\Pi_u) \rightarrow N_2(B^3\Pi_g)$	~ 11	50 ns	~ 30
LBH N ₂	$N_2(a^1\Pi_g) \rightarrow N_2(X^1\Sigma_g^+)$	$\sim\!8.55$	$14 \ \mu s$	~ 77
$1NN_2^+$	$N_2^+(B^2\Sigma_u^+) \rightarrow N_2^+(X^2\Sigma_g^+)$	~18.8	69 ns	~ 48

- NO- γ emissions
 - The transition leading to NO- γ emissions:

 $\operatorname{NO}(A^2\Sigma^+) \to \operatorname{NO}(X^2\Pi_r) + h\nu.$

The excitation energy threshold for NO($A^2\Sigma^+$) is 5.45 eV.

- The NO- γ emissions from sprites are not observable for a wide bandwidth photometer. However, a photometer with a passband of 240–260 nm may be able to detect sprite NO- γ emissions from space [Liu and Pasko, 2007].

- Wide and narrow field of view images of a bright sprite event [Gerken et al., Geophys. Res. Lett., 27, 2637, 2000].
- The filamentary structures are the same phenomena known as streamer discharges at near atmospheric pressure.

High Speed Imaging of Sprites

 High speed sprite images with ~0.2 ms exposure time [Cummer et al., Geophys. Res. Lett., 33, L04104, 2006].

High Speed Imaging of Sprites

• High speed sprite images with ~0.2 ms exposure time [*Cummer et al.*, Geophys. Res. Lett., 33, L04104, 2006].

High Speed Imaging of Sprite Streamers

 Sprite images recorded with 50 μs exposure time [McHarg et al., Geophys. Res. Lett., 34, L06804, 2007; Stenbaek-Nielsen et al., Geophys. Res. Lett., 34, L11105, 2007].

- \bullet General Morphology
- Physical Mechanism of Sprites
- Large-Scale Modeling of Sprites
- Modeling of Sprite Streamers

"While the electric force due to the thundercloud falls off rapidly as r increase, the electric force required to cause sparking (which for a given composition of the air is proportional to its density) falls off still more rapidly. Thus, if the electric moment of a cloud is not too small, there will be a height above which the electric force due to the cloud exceeds the sparking limit."

Physical Mechanism of Sprites

• Strong quasistatic electric field may briefly exist in the lower ionosphere following cloud-to-ground lightning [*Pasko et al.*, J. Geophys. Res., 102, 4529, 1997].

Delay Between Sprite Initiation and Parent Lightning Return Stroke

• Delays of 83 sprite events observed at Yucca Ridge, Colorado in the summer of 2005 [Li et al., 2008].

Short-Delayed Sprites

• The measurement-inferred mesospheric electric field agrees within 20% with the threshold electric field for conventional breakdown [*Hu et al.*, 2007].

Long-Delayed Sprites

• The normalized lightning quasistatic electric field at sprite initiation varies from 0.2-0.6 E_k [Li et al., 2008; Gamerota et al., 2011].

- \bullet General Morphology
- Physical Mechanism of Sprites
- Large-Scale Modeling of Sprites
- Modeling of Sprite Streamers

Large Scale Sprite Modeling [Liu, 2012]

• Drift-diffusion equations coupled with Poisson's equation:

$$\begin{aligned} \frac{\partial n_i}{\partial t} + \nabla \cdot \vec{J}_i &= S_i - L_i, \\ \nabla^2 \phi &= -\frac{\rho}{\varepsilon_0}, \end{aligned}$$

where

 n_i - the density of the *i*th charged species, $\vec{J_i}$ - the flux density, S_i - source, L_i - loss, ϕ - electric potential. $\vec{E} = -\nabla \phi$.

- The ion chemistry is a modified version of the model from [*Lehtinen and Inan*, 2007].
- Model species

Neutral Species				
$Q M M_x M_{ac}$				

Charged Species					
e O	- M-	M_x^-	M^+	M^+_x	

• Except the detachment process, O⁻ ions are included in a similar manner as other light negative ions.

Reaction No.	Reaction	Rate Constant			
Cosmic ray b	ackground				
$\mathbf{R1}$	$Q + M \rightarrow e + M^+ + Q$	1e-25			
Electron impact reaction					
R2	$e + M \rightarrow e + e + M^+$	f(E/N)			
$\mathbf{R3}$	$e + O_2(M) \rightarrow O^- + O(M_{ac})$	f(E/N)			
$\mathbf{R4}$	$e + M + M \rightarrow M^- + M$	f(E/N)			
Recombination	on				
R5	$e + M^+ \rightarrow M_{ac} + M_{ac}$	3e-13			
R6	$e + M_x^+ \rightarrow M + M$	1e-12			
$\mathbf{R7}$	$M^- + M^+ \rightarrow M + M$	5e-13			
$\mathbf{R8}$	$M^- + M_x^+ \rightarrow M + M_x$	5e-13			
$\mathbf{R9}$	$O^- + M^+ \rightarrow O(M_{ac}) + M$	5e-13			
R10	$O^- + M_x^+ \rightarrow O(M_{ac}) + M_x$	5e-13			
R11	$M_x^- + M^+ \rightarrow M_x + M$	5e-13			
R12	$M_x^- + M_x^+ \to M_x + M_x$	5e-13			
R13	$M^- + M^+ + M \rightarrow M + M + M$	5e-37			
R14	$\mathrm{M^-} + \mathrm{M^+_x} + \mathrm{M} \to \mathrm{M} + \mathrm{M_x} + \mathrm{M}$	5e-37			
R15	$O^- + M^+ + M \rightarrow O(M_{ac}) + M + M$	5e-37			
R16	$O^- + M_x^+ + M \rightarrow O(M_{ac}) + M_x + M$	5e-37			
R17	$M_x^- + M^+ + M \to M_x + M + M$	5e-37			
R18	$M_x^- + M_x^+ + M \rightarrow M_x + M_x + M$	5e-37			
Ion conversion	n				
R19	$M^+ + M + M \rightarrow M^+_x + M$	2e-42			
R20	$M_x^+ + M \to M^+ + M + M$	2e-22			
R21	$M_x^+ + M_{ac} \rightarrow M^+ + M$	1e-16			
R22	$M^- + M + M \rightarrow M^x + M$	1e-43			
R23	$O^- + M + M \rightarrow M_x^- + O(M_{ac})$	3e-43			
R24	$M_x^- + M_{ac} \rightarrow M^- + M$	2e-16			
Electron detachment					
R25	$M^- + M \rightarrow e + M + M$	2e-29			
R26	$M^- + M_{ac} \rightarrow e + M + M_{ac}$	2.5e-16			
R27	$O^- + M \rightarrow e + M_x$	f(E/N)			
R28	$O^- + M \rightarrow e + M_x$	1e-21			
R29	$\rm O^- + M_{ac} \rightarrow e + M$	4e-16			

• Q(t) has the following form [*Pasko* et al., 1997]:

$$Q(t) = Q_0 \frac{\tanh(t/\tau_f)}{\tanh(1)}, \ 0 \le t < \tau_f,$$

$$Q(t) = Q_0, \qquad t \ge \tau_f$$

•
$$\tau_f = 1$$
 ms.

Sprite Halo Caused by +CG

• Sprite halo by +CG with 600 C km charge moment change.

- \bullet General Morphology
- Physical Mechanism of Sprites
- Large-Scale Modeling of Sprites
- Modeling of Sprite Streamers

Streamer Model Equations

• Drift-diffusion equations coupled with Poisson's equation [*Liu and Pasko*, J. Geophys. Res., 109, A04301, 2004]:

$$\begin{aligned} \frac{\partial n_e}{\partial t} + \nabla \cdot (n_e \vec{v}_e) - D_e \nabla^2 n_e &= (\nu_i - \nu_{a2} - \nu_{a3}) n_e - \beta_{ep} n_e n_p + S_{ph}, \\ \frac{\partial n_p}{\partial t} &= \nu_i n_e - \beta_{ep} n_e n_p - \beta_{np} n_n n_p + S_{ph}, \\ \frac{\partial n_n}{\partial t} &= (\nu_{a2} + \nu_{a3}) n_e - \beta_{np} n_n n_p, \\ \nabla^2 \phi &= -\frac{e}{\varepsilon_0} (n_p - n_e - n_n), \end{aligned}$$

where

- n_e, n_p, n_n the density of electrons and ions,
- v_e drift velocity,
- D_e diffusion coefficient,
- ν_i electron impact ionization frequency,

 ν_{a2} , ν_{a3} – two-body and three-body attachment frequencies,

- β_{ep}, β_{np} recombination coefficients,
- S_{ph} photoionization rate,
- ϕ electrostatic potential.

Double Headed Streamers

- Streamers developing in E₀ = 1.5E_k at three altitudes: 0, 30, and 70 km [*Liu and Pasko*, J. Geophys. Res., 109, A04301, 2004].
- Each streamer consists of a downward propagating positive streamer head and upward propagating negative streamer head.
- Streamer heads expand during propagation.
- The three streamers look very similar but have very different temporal and spatial scales - similarity laws for streamer discharges at different pressures.

Sprite Streamer Developing in Propagation Threshold Field

• Development of a positive sprite streamer in $E_0 = 0.16E_k$ [Liu and Pasko, Geophys. Res. Lett., 32, L05104, 2005].

- There is no clear expansion of streamer channel.
- Emissions are localized in the streamer head.

Comparison Between Sprite Streamer Modeling and Observations

• High speed images of sprite streamers [*McHarg et al.*, 2007; *Stenbaek-Nielsen et al.*, 2007].

• The model sprite streamer at 75 km altitude [Liu et al., 2009a].

Comparison Between Streamer Modeling Results with ISUAL Measurements

• The intensity ratio between $2PN_2$ and other emission band systems [*Liu et al.*, 2006, 2009b].

Sprite Streamer Initiation from Halo Structures

• Sprite streamer initiation (20 μ s exposure) from structures appearing at the bottom of a halo [*Stenbaek-Nielsen et al.*, 2013].

Important Parameters Determining Sprite Streamer Initiation

• Important parameters determining sprite streamer initiation include charge moment change, ionospheric inhomogeneity magnitude, and the sharpness of ambient density profile [*Qin et al.*, 2011].

Single or Double-Headed Streamers

• If lightning field > E_k , inhomogeneities in halos will lead to single-headed streamers and those at and below the lower edge of the sprite halo will lead to double-headed streamers [*Qin et al.*, 2012].

Streamer Formation from Ionospheric Inhomogeneities

• This offers an explanation to observation of sprite initiation below E_k .

Brightening of Streamer Initiation Point

• Brightening of the streamer origin agrees with observations [Kosar et al., 2012].

Categories of problems in the sprite theory:

- Initiation
- Structures and dynamics
- Optical emission spectrum
- Infrasound signatures
- Chemical effects
- Effects on the propagation of electromagnetic waves

Categories of problems in the theory of streamer discharges:

- Branching
- Chemical effects
- Heating effects
- Interactions between streamers