

Fermi GBM observations of TGFs

on behalf of the Fermi GBM TGF team

Fermi

Altitude:565 kmInclination:25.6°

Single Orbit:

Meegan et al. (2009)

GBM Detectors

Nal Detector

Material:	Sodium Iodide
Number:	12
Diameter:	12.7 cm
Thickness:	1.27 cm
Energy Range:	8 - 1000 keV

BGO Detector

Material:	Bismuth Germanate
Number:	2
Diameter:	12.7 cm
Thickness:	12.7 cm
Energy Range:	0.2 - 40 MeV

Detecting TGFs with GBM

- * GBM is a "triggering" instrument: statistically significant rate increase in 2 or more detectors.
- * Hardware design limits binning for this purpose to 16 ms (and longer).
- * Time-Tagged Event (TTE) data downlinked for triggers (individual photons recorded).
- Originally triggers based on 12 NaIs; since Nov 2009 new triggers implemented to include the BGOs.
- Rate increase from one every 32.5 days to one per 4.0 days.
- * GBM is a very efficient TGF detector: 2 us GPS time-tags on TTE data during triggers, 2.6 us deadtime per event.

A GBM TGF

TGFs triggered by GBM

327 GBM TGFs

NASA/MSFC Lightning Imaging Sensor Lightning strikes since 1998

Different morphologies

- Many more multi-pulsed TGFs with BATSE and GBM than RHESSI due to triggering windows?
- GBM durations ~250 us, consistent with RHESSI; AGILE TGFs much longer despite shorter triggering window than GBM.
- Instrumental effects (i.e. deadtime, pulse pile-up) become extremely important for TGF analysis because of the extremely high counting rates.

TGF and WWLLN lightning correlations

Connaughton et al. (2013)

TGFs and TEBs

HILITE 2013

Connaughton et al. (2010)

Terrestrial Electron Beams

Also positrons

GBM TGF search eras

Method	Dates	Detection Rate (year ⁻¹)
GRB triggers	> 2008 July 11	9.8
TGF triggers (using BGO detectors)	>2009 Nov 10	90
TTE in "boxes"	2010 July 16 – 2012 Nov 25	estimate 850 (actual 0.51 per hour in favorable times & regions)
Continuous TTE	> 2012 Nov 26	

Continuous TTE "box"

- * 210 new TGFs found in 328 hours of data, along with 17 triggered TGFs and one TEB.
- * The overall detection rate improvement: x10; this is due to detecting fainter and shorter TGFs.

Briggs et al. (2013)

TGF/lightning ratios

Region	Ratio
Average	$(3.8\pm0.2) \times 10^{-4}$
Americas	$(4.9\pm0.3) \times 10^{-4}$
Africa	$(2.3\pm0.2) \times 10^{-4}$
Asia	$(2.7\pm0.4) \times 10^{-4}$
Australia	$(8.6\pm1.0) imes10^{-4}$

- We use these comparisons to estimate a global TGF rate (within ±26°) of ~400,000 per year.
- * With continuous TTE, GBM will detect ~850 TGFs per year.

Briggs et al. (2013)

Continuous TTE all the time

PRELIMINARY: incomplete cosmic ray removal.

813 candidates from 9 months of **continuous** TTE:

2012 Nov 26 to 2013 Aug 31

TGFs with WWLLN matches

- With this new large GBM TGF sample and the high GBM/WWLLN association rate, we now have a large sample of accurate (~10 km) locations.
- * This map shows 89 TGF locations.

ws TGF/lightning relationship

- There is a high association rate between GBM and WWLLN (~1/3), but the WWLLN detection rate for IC lightning is low (~5%).
- Two types of associations? 85% of the gamma/radio associations are simultaneous to within ~40 us, but the remainder have ~ms separations.
- * Similarity between gamma-ray and radio (twice-integrated) profiles.
- Suggestions that the radio emission is from TGF itself (Cummer et al. 2011; Dwyer 2012)

WWLLN Match vs Duration

Energy distribution

32 WWLLN discharges > 0.2 ms from TGF peak. Mean Energy: 700 J + 154 WWLLN discharges simultaneous with TGF peak. Mean Energy: 3.1 kJ

Instrumental effects

Raw Distribution

Pulse Pile-up

Deadtime

Fluence distribution

- * Sample: 106 TGFs
- * Blue: model independent correction of the GBM TGF fluence distribution.
- Detection efficiency by simulations: lowest bin 34 -> 89.
- Deadtime corrected by deconvolution simulations of each TGF.
- Pulse pile-up: additional 10% deadtime correction for the 7 brightest TGFs in the sample.

Tierney et al. (2013)

Fluence distribution

Fitting a power-law to the (blue)
 corrected distribution: the index is
 -2.20 ± 0.13 (uncorrected -2.86 ± 0.32).

Cf: Ostgaard et al. (2012), assuming a power-law form:
1) Comparing the total numbers of GBM and RHESSI GBM TGFs and relative sensitivities, w / o deadtime correction: -2.3 ± 0.2,
2) RHESSI with deadtime correction: -2.3 to -3.0.

What have we learned from Fermi GBM

- * Short, bright and energetic with different pulse shapes.
- * Can be seen through their gamma-ray or electron/positron signal.
- * Generate currents that discharge the E field.
- * Can also be seen through their strong VLF radio signal.
- * Fluence distribution consistent with power-law of index -2.20 \pm 0.13.

http://gammaray.nsstc.nasa.gov/publications/tgf_journal.html