

Search for neutrinoless double beta decay with GERDA: Status report

OUTLINE

- A very short introduction
- Phase I Data taking
- Phase I background decomposition
- Phase II detectors
- Phase II hardware preparations

Béla Majorovits for the GERDA collaboration Max-Planck-Institut für Physik, München, Germany

A very short introduction: 0vββ-decay

$$\frac{1}{\swarrow} = G(Q^5,Z) |M_{nucl}|^2$$

$$0v\beta decay - Phase space-Matrix element Effective Majorana Neutrino mass$$

A v ery short introduction: 0vββ-decay

Observation of 0vßß decay:

Lepton number violation!

- Neutrino must have Majorana nature!
- Determination of absolute mass scale?
- Mass hierarchy of Neutrinos?
- Information on CP violating phases?

CP violating Majorana phases could be responsible for Baryogenesis via Leptogenesis

A very short introduction: GERDA

Operate "naked" HPGe detectors directly in ultra pure cryoliquid (G. Heusser, 1995)

A very short introduction: GERDA

Eur. Phys. J. C (2013) 73:2330 DOI 10.1140/epjc/s10052-013-2330-0

Béla Majorovits

THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

The GERDA experiment for the search of $0\nu\beta\beta$ decay in ⁷⁶Ge

Phase I: reach BI 0.01 cts/(keV kg yr) \rightarrow T_{1/2} sensitivity: 2*10²⁵ yr (test KK claim) <u>GERDA status report</u> II: reach BI 0.001 cts/(keV kg yr) \rightarrow T_{1/2} sensitivity: ~ 10²⁶ yr

A very short introduction: GERDA

Phase I data taking

Live time & duty cycle 9th of Nov – 5th of Jan 2013

Phase I data taking

Total exposure and BIs until 15th Apr. 2013:

Time stamp of first event: Wed Nov 9 17:50:20 2011

Time stamp of last event: Mon Apr 15 00:52:16 2013

(Live time: 456.15 days,

after recovery of some data from unstable runs)

no PSA appliedExposure with Phase I detectors: 20.00 kg*yr on April 8th 2013GERDA status report

Phase I data taking Natural vs. Enriched detectors:

GERDA phase I background improved by order of mag. wrt earlier experiments.

Phase I data taking New measurement of ²^vT_{1/2} (⁷⁶Ge) published:

Phase I background decomposition:

Phase I background decomposition:

 226 Ra (E_a = 4.8 MeV, $T_{1/2} = 1600 \text{ y}$ 222 Rn (E_a = 5.5 MeV, $T_{1/2} = 3.8 d$ ²¹⁸Po ($E_{\alpha} = 6.0 \text{ MeV}$, $T_{1/2} = 183 s$) ²¹⁴Pb (T_{1/2} = 0.45 h) ²¹⁴Bi (T_{1/2} = 0.33 h) 214 Po (E_a = 7.7 MeV, $T_{1/2} = 164 \ \mu s$) ²¹⁰Pb (T_{1/2} = 22.3 y) ²¹⁰Bi (T_{1/2} = 5.01 d) 210 Po (E_a = 5.3 MeV, $T_{1/2} = 138.4 \text{ d}$ ²⁰⁶Pb (stable)

Phase I background decomposition: Count rate in 5.3 MeV peak and E>5.3 MeV as fct. of time:

 \rightarrow^{210} Po contamination of p+ surface (T_{1/2} = 138 days)

 \rightarrow ²²⁶Ra contamination on and close to p+ surface

Phase I background decomposition: Background decomposition:

Phase I background decomposition:

Binned maximum posterior fit to the sum enrGe coax spectrum in (570 – 7500) keV window

Background components considered: ⁴²K, ⁴⁰K, ²¹⁴Bi (from ²²²Rn & ²²⁶Ra chains), ²²⁸Ac & ²²⁸Th (β- / γ-induced

events)

and α-induced event model

p-value of the fit: 0.3

Prediction for BI consistent with interpolation of Bkg

 \rightarrow **0**v $\beta\beta$ analysis independent from background model!

Phase II detectors The voyage of the enriched germanium

Phase II detectors

Monitoring of exposure to cosmic rays: Production history

Phase II detectors

HEROICA team:

Measured main operational paramters, active volumes, dead layers and pulse shape parameters for all 30 BEGe detectors

EL: Electronics for DAQ

All 30 detectors according to specifications: Bias voltage < 5000kV, E-resolution @ 1.3MeV (FWHM) < 1.9 keV (0.14%)

Phase II detectors

Background of enriched coax and BEGe detectors:

BEGe BI: (0.046±0.010) cts/(keV kg yr) Without pulse shape analysis and LAr veto used

Phase II hardware preparations

Mounting of new GERDA phase II infrastructure ongoing

Cable bands for new lock being produced, partly ready

Upgrade of GERDA infrastructure planned for summer 2013

Phase II hardware preparations

Background rejection by detection of LAr scintillation light "hybrid solution" (supported by MC with light tracking):

SiPMs connected to fibresLow background PMTssimulations show: reduction of background tous report0.001 cts/(keV kg yr) seems realistic

Phase II hardware preparations

Integration test with two BEGes and new very front end electronics:

Spectra taken in LAr: Long term stability seems ok Energy res. good: ~2.6 keV @ 2.6 MeV PSA: 1.1% A/E (FWHM)

CONCLUSIONS:

Béla Majorovits

- Phase I design exposure 20 kg yr reached beginning of April
 - Background index of golden data set close to design goal

- Unblinding of RoI in June
- All 30 BEGe detectors available and characterized
 - Five BEGes taking data since July 2012
 - Hardware for GERDA phase II in preparation
 - Transition to Phase II will start in July

GERDA : Status of phase I

Energy calibration of all detectors:

GERDA : Status of phase I

Comparison of backgrounds lines in HdMo and GERDA experiments

isotope	energy [keV]	^{nat} Ge (3.17 kg yr)		^{enr} Ge (6.10 kg yr)		HDM (71.7 kg yr)
		tot/bck [cts]	rate [cts/(kg yr)]	tot/bck [cts]	rate [cts/(kg yr)]	rate [cts/(kg yr)]
⁴⁰ K	1460.8	85/15	$21.7^{+3.4}_{-3.0}$	125/42	$13.5^{+2.2}_{-2.1}$	181 ± 2
⁶⁰ Co	1173.2	43/38	<5.8	182/152	$4.8^{+2.8}_{-2.8}$	55 ± 1
	1332.3	31/33	<3.8	93/101	<3.1	51 ± 1
137Cs	661.6	46/62	<3.2	335/348	<5.9	282 ± 2
²²⁸ Ac	910.8	54/38	$5.1^{+2.8}_{-2.9}$	294/303	<5.8	29.8 ± 1.6
	968.9	64/42	$6.9^{+3.2}_{-3.2}$	247/230	$2.7^{+2.8}_{-2.5}$	17.6 ± 1.1
²⁰⁸ Tl	583.2	56/51	<6.5	333/327	<7.6	36 ± 3
	2614.5	9/2	$2.1^{+1.1}_{-1.1}$	10/0	$1.5^{+0.6}_{-0.5}$	16.5 ± 0.5
²¹⁴ Pb	352	740/630	$34.1^{+12.4}_{-11.0}$	1770/1688	$12.5_{-7.7}^{+9.5}$	138.7 ± 4.8
²¹⁴ Bi	609.3	99/51	$15.1^{+3.9}_{-3.9}$	351/311	$6.8^{+3.7}_{-4.1}$	105 ± 1
	1120.3	71/44	$8.4^{+3.5}_{-3.3}$	194/186	<6.1	26.9 ± 1.2
	1764.5	23/5	$5.4^{+1.9}_{-1.5}$	24/1	$3.6^{+0.9}_{-0.8}$	30.7 ± 0.7
	2204.2	5/2	$0.8^{+0.8}_{-0.7}$	6/3	$0.4_{-0.4}^{+0.4}$	8.1 ± 0.5

Eur. Phys. J. C (2013) 73:2330