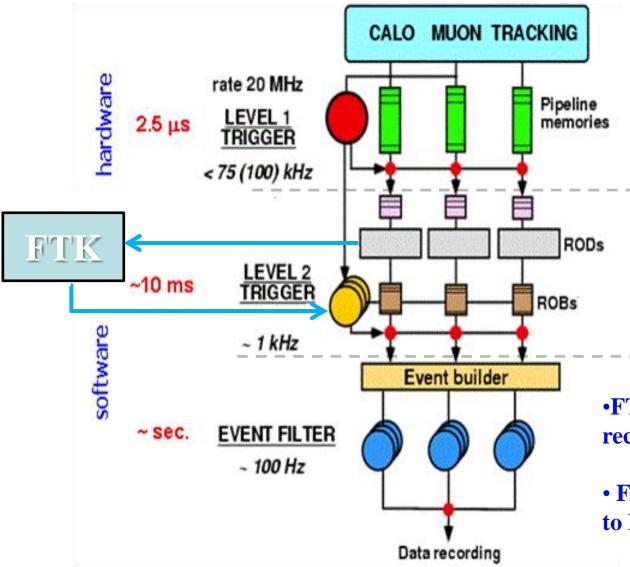
FTK: HW status


Marco Piendibene for the FTK team

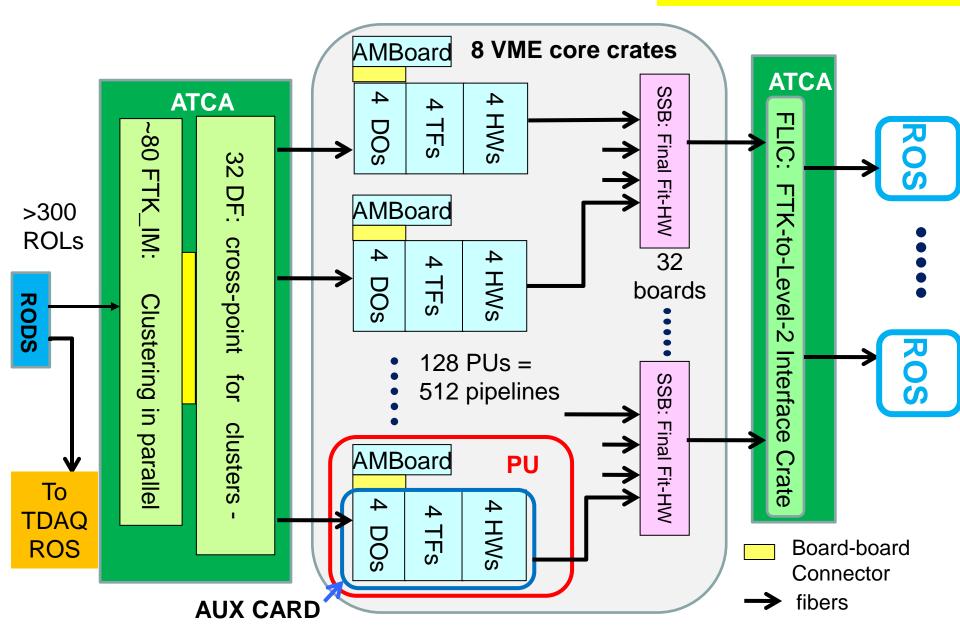
Atlas Italia – Pisa - April 12, 2013

OUTLINE

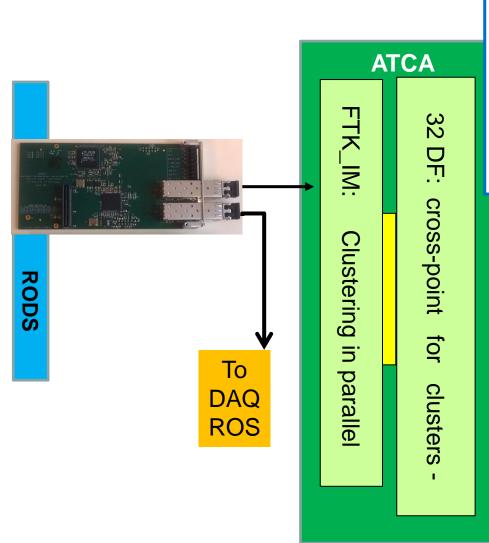
- For each board: Status future schedule for 2015
- Summary of timescales
- Milestones & Conclusions

Atlas trigger system: where is FTK?

•We need to reduce the amount of data


•Atlas 3 levels trigger

•FTK is an hardware system to reconstruct the particles tracks


• FTK gives tracks information to Level2 trigger.

FTK global view

16400 AMchips ~2000 FPGAs Thousands of serial links

Dual-output HOLA (U. of Chicago)

- Sends SCT & pixel data to DAQ & FTK.
- All required boards produced and tested.
- 32 boards installed at P1.
- More SCT RODs \rightarrow produce 40 more HOLAs. s
- IBL RODs have it built in.
 We will pay for ½ of the QSFPs.

Schedule:

Production of additional DO-HOLAs:

Spring. '13 Installation of DO-HOLAs/fibers:

when fibers from all ROD-BOCs will be disconnected for new RODs installation

Test of installation

when ROS will be available

S

П

FTK input mezzanine (FTK_IM Frascati Waseda)

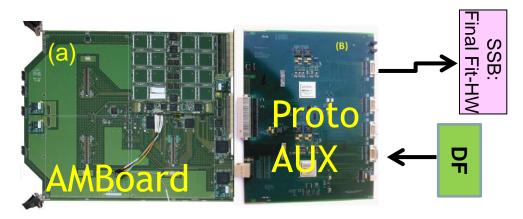
- Receive ROD's data and do cluster finding.
- Prototypes produced, tested, and used @P1. •
- Few changes needed for DF compatibility. •
- New prototype: now under stand-alone test

Data Formatter (DF, Fermilab, UofC)

ATCA Distributes found clusters to 64 FTK η - ϕ towers. **ATCA** 32 for complex fiber-to-tower mapping. P PCBs delivered, parts assembly is on-going First task (summer '13): test high speed serial data FTK_IM: Clustering in ross-point transfer & ATCA control functionality. Firmware test. RODS б clusters >300 paralle **ROLs**

Schedule:

Test FTK_IM-IBL BOC: Sum. '13 Integrated tests w DF: Aut. '13 **Global Integration** Spr.-Sum. '14 Production FTK_IM: Sum. '14 **DF Production** Sum. '14 **DF-FTK_IM Installation** Aut, '14

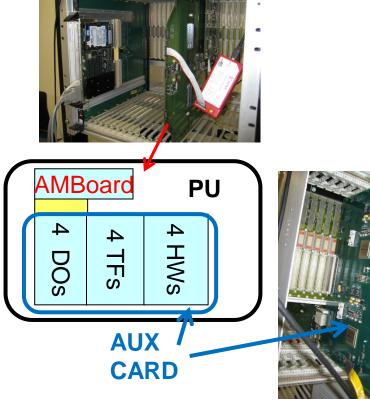

S

S

U

S

FTK Processor Unit (PU) - Status



- 128 PUs do pattern matching and the 1st stage track fitting.
- A PU consists of an

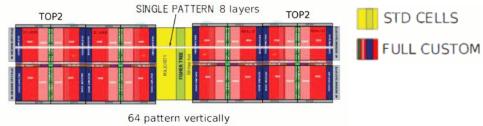
a large *Auxiliary Card* (b) (AUX-UoChicago) behind it.

We tested them successfully together in the Pisa test stand for Data Transfer & VME functions 7

The final AUX (U. of Chicago)

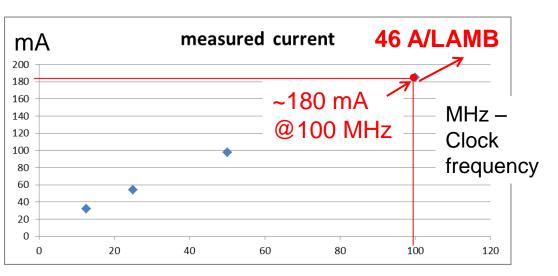
- Receives DF data, sends coarse hits to AMB, receives back roads, and does the 1st-stage fitting (8 layers).
- Final board design completed
 - Firmware ready for data processing (under optimization), but error handling, monitoring tasks to be added.
- Engineering review in March successful
- prototype PCB ordered

Schedule:


Standalone test: *Summer '13* Integrated Test DF/AUX : *Aut. '13* Integrated Test AMB/AUX : *next Winter* Integrated 1st stage: *Spring '14* Global Integration: *Spr.-Sum '14* AUX Production *Sum-Aut. '14* AUX Installation *Aut. '14-Winter '15*

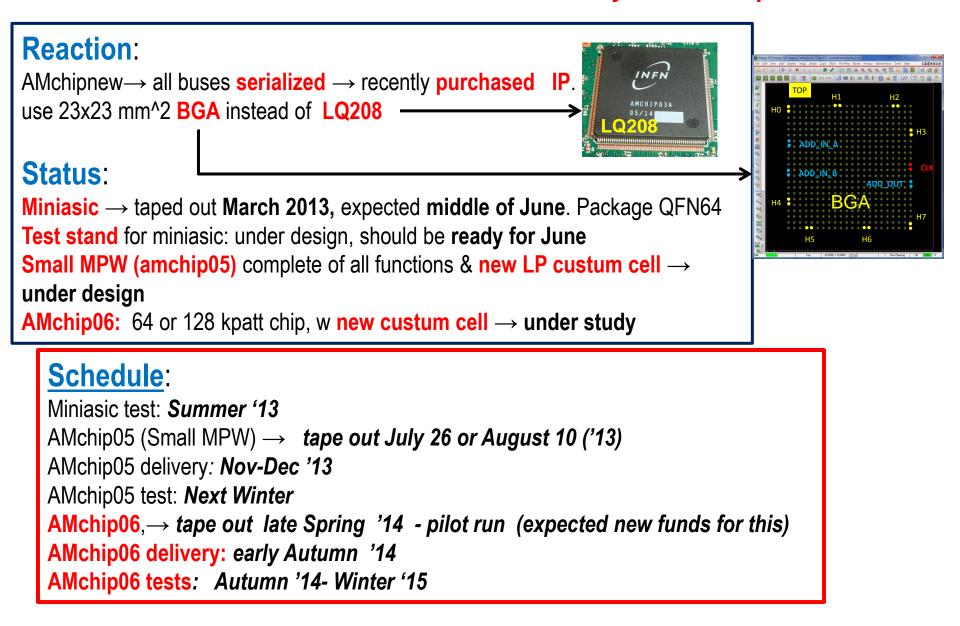
П

AM System (1): - Status DOI:10.1109/ANIMMA.2011.6172856 AM chip04: TMSC 65 nm with Variable Resolution


custom cell to reduce pattern size: 8k patterns in 14 mm².

- Yield>80% tests successful
- 64kpatt power consumption lower than AMchip03

AMchip03 (5 kpat, 180 nm): $1 A \rightarrow 1,8 W$ AMchipnew (64 kpatt): 1,45 A $\rightarrow 1,7 W$ p03 expected 1,6 W

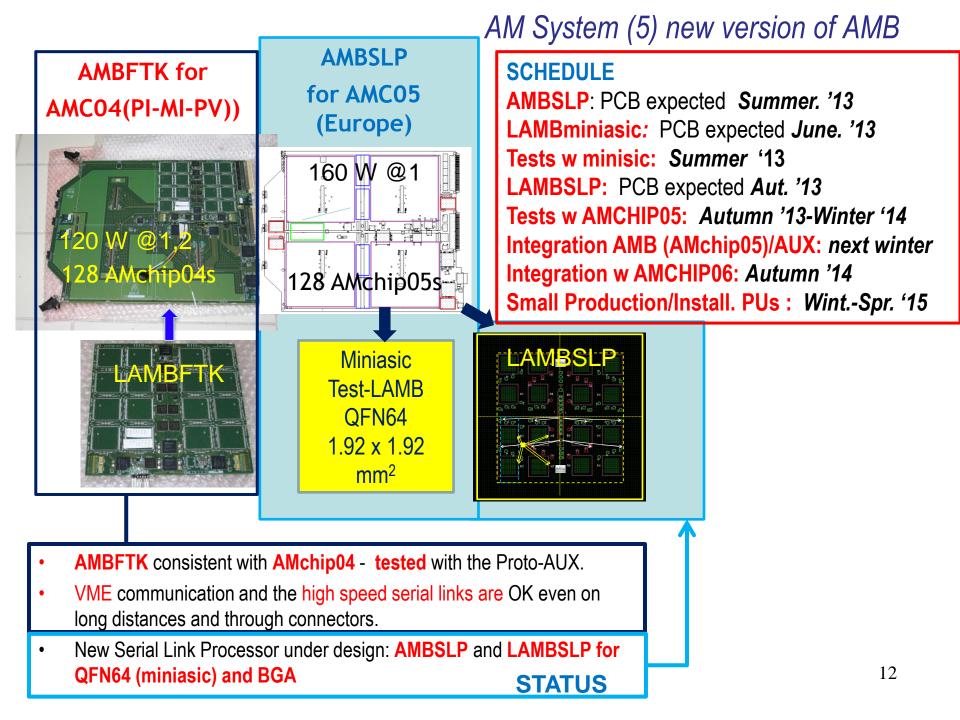

EXTREMELY GOOD RESUSLTS, BUT: we need Serialized I/O whose consumption is high (many SL fanouts).

TWO possibilities:

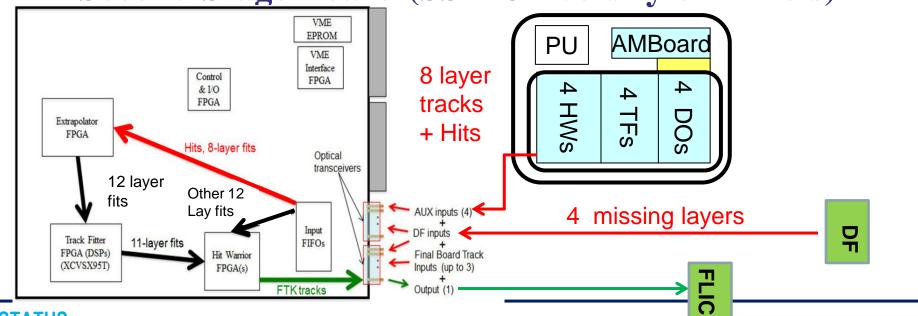
(1) Dilute boards in more crates

(2) *Reduce further* AMchipnew core consumption: down from 1.2 v to Q.6 v: *new LP custom cell.*

AM System (2): Why Serialized I/O TSMC-65 nm: Too many GND/VCC pads needed



AM System (3): A new LAMB for AM chip05: all buses on serial links

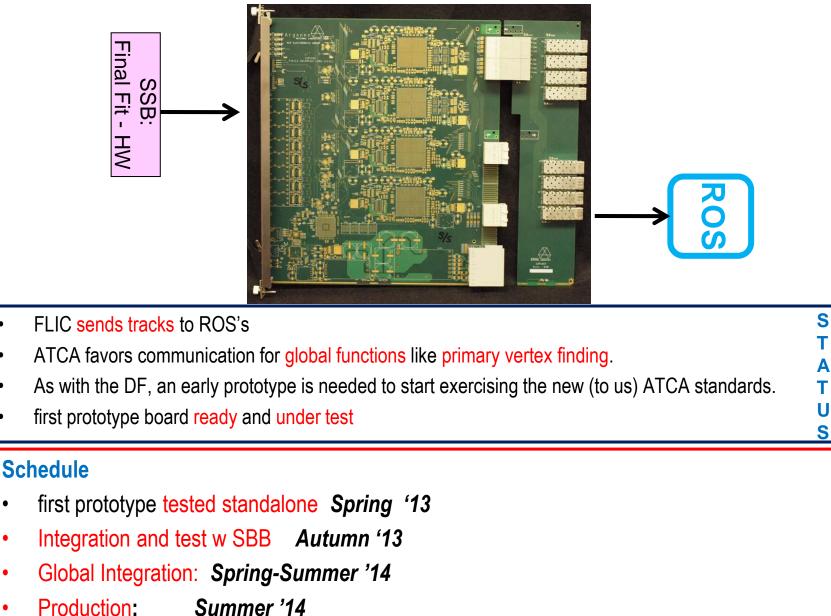


BGA with Flip chip technique:

- (1) high frequency solution for 2.5 Gb/s links
- (2) Caps included in the package to be able to solder BGA on both sides (32 BGA/LAMB)
- (3) Possibility of multi-packaging
- (4) **AMchip05 more expensive** than expected (IP, flip chip BGA, multipackaging) INFN budget insufficient \rightarrow the **AM system** try to become **EUROPEAN** 11

Second Stage Board (SSB-University of Illinois)

STATUS


- SSB: full 12-layer fit: (a) receives 8-layer good tracks from the PU (b) find hits in the missing 4 silicon layers, (c) fit tracks with 12 lay, (d) removes duplicates.
- basic firmware functions written, testing in progress.
- After that, board design will be finalized.
- An engineering review is planned for April, with a prototype to be built shortly after.

SCHEDULE

- Stand-alone test Summer '13
- Integration with FLIC Autumn '13
- Integration with AUX Autumn '13

Global Integration: Spring –Summer '14 Small Production: Summer '14 Installation: Autumn '14 13

FTK-to-Level-2 Interface Crate (FLIC-Argonne)

Installation: Autumn '14

٠

•

٠

Schedule Summary for 2015 a-16 PUS 8-16 PUS					300 OLs To DAQ OS		~80 FTK_IM: Clustering in parallel		32 DF: cross-point for clusters -			MBO 4 DOs MBO 4 DOs MBO 4 DOs	4 TFs ard 4 TFs 128 512				^ ^ ^	tes SSB: Final Fit-HW 32 a SSB: Final Fit-HW	ds			ard-be		
Months	7	8	9	10	11	<mark>12</mark>	1	2	3	4	5	6	7	8	9	10	11	12	1	2	2 3	3 4	5	6
Tasks	2013			.3	3						2014									2015				
Dual Output HOLA													test											
FTK Input Mezzanine	w IBL		١	w DF/ROD							Global Int.													
Data Formatter	test			w AUX		(C	olob	<mark>al Int</mark>	.											
Miniasic	te	st																						
AMchip05	tape	eout				te	st	-																
AMchip06											tapeout					test		est						
AMBSLP-Mini-LAMBSLP		tes	t																					
AMBSLP-LAMBSLP				w AMO		<i>N</i> 05)5 w AU		UX	Global Int.		.	w AM06				6	8-16 PUs						
AUX CARD	test			w DF			W A	AMB	MBSLP		Global Int.							8-	16 I	Us	-			
Second Stage Board (SSB)	test			w FLIC/A		/AU	IX				Global Int.													
FTK Level-2 Interface Crate (FLIC)	test			w SSB - R			<mark>DS</mark>			Gl		lobal Int.												

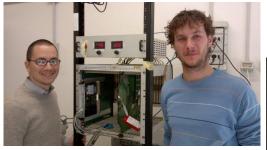
Many activities in FTK lab – Pisa (april 2013)

Paola Giannetti (INFN) Pisa FTK Project leader

Saverio Citraro (University of Pisa & INFN) HW/FW engineer Daniel Magalotti (University of Modena and Reggio Emilia – INFN Perugia) Engineer, HW/FW expert Firmware responsible

During a meeting..

Marco Piendibene (University of Pisa & INFN) Engineer, HW/FW expert Hardware responsible



Andreas Sakellariou (Prisma Electronics, Greece – **IAPP collaboration**) Engineer, HW/FW expert

Riccardo Cipriani (University of Pisa & INFN) HW/FW engineer (student)

Pierluigi Luciano (University of Pisa & INFN) HW/FW engineer (student)

Calliope-Louisa Sotiropoulou (Aristotle University of Thessaloniki , Greece – IAPP collaboration) Physicist, HW/FW expert

Milestones & Conclusions

Milestones

- Before August '14: Global integration with AMchip05 (small AM bank)
- Autumn '14: Production and Installation of all boards except AMBSLP+ that will come later (waiting AM06)

Conclusion

- All the prototypes are in advanced status and soon we will know test results
- The schedule is tight, especially for the AMBSLP board. No contingency

Crate needed Power

LAMB power for AMchip (from AM04 measur.) $\sim 57*4=230$ W as expectedAUX power ~ 75 WCrate Power $\sim (75+57*4)*16 =$ 4850 W was OK

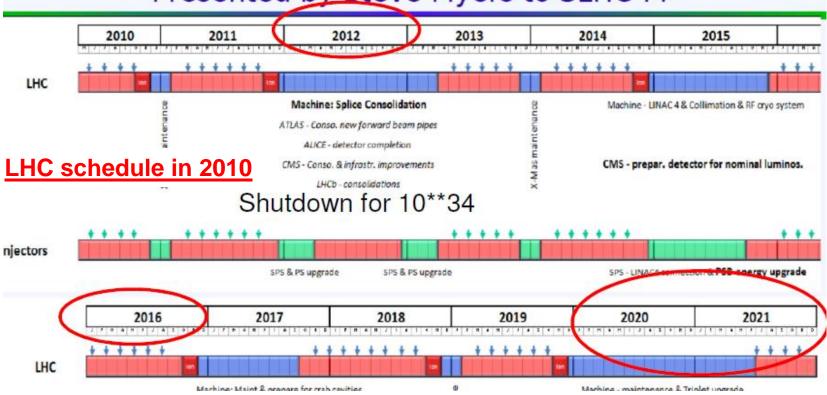
BUT **Serial links** add a not negligible contribution:

~ **30 W** for each LAMB and **24 W** for AMBSLP: Tot~ (4*30+24)*16 = **2300 W TOO MUCH**

FURTHER REDUCTION of AMCHIP CONSUMPTION and LARGER BANK (128 Kpatterns) will RENORMALIZE THE TOTAL CONSUMPTION

~5 KWATT

AM System (4) IAPP and STREP FP7 applications for extra funds People Manpower ICT - funds for Amchip – requested to EC 3 Meuros Funded 1.5 Meuros (in March the result) Starts Feb 2013 **UniPisa** (Pisa) Dell'Orso - **AM system boards LPNHE** (Paris) Calderini - **AMchip** (applied also to its funding agency) AUTH (Tessaloniki) Kordas board firmware – simulation **IAPP** CERN (TE-MPE-EM section) Formenti board design consortium **CAEN** (Viareggio) Petrucci - Integration Strong technical Prisma Electronics (Alexandroupolis) Mermigli support board development, assembly, test – firmware


Strong technical

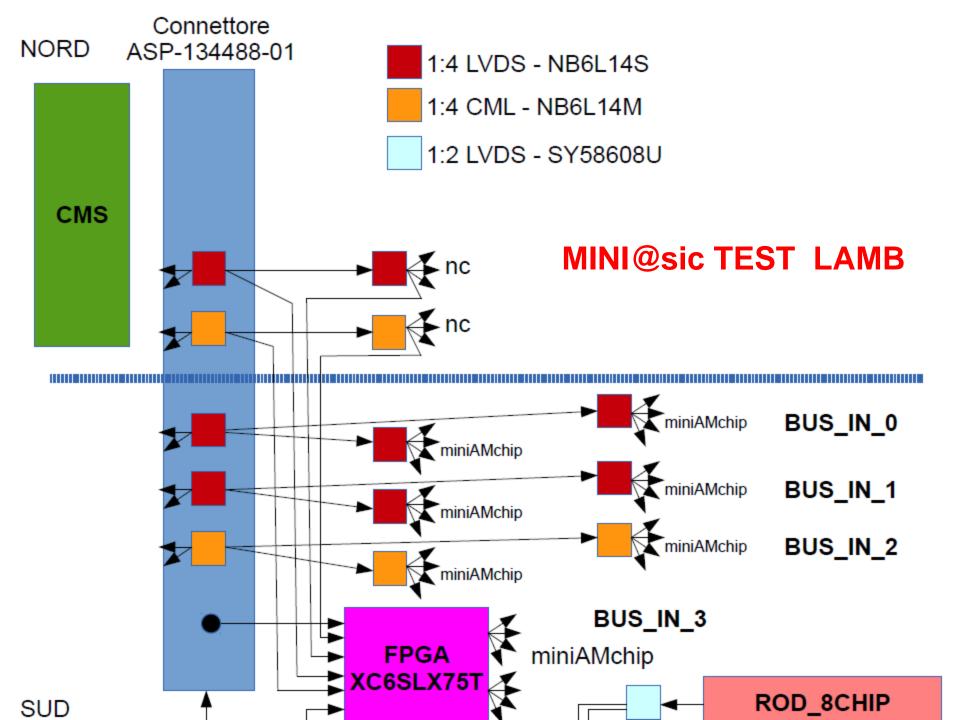
support

STREP (coordinator INFN) would add for FTK: **University of Geneva** on **AM system Boards** (applied also to its funding agency)

IMEC for flip chip multi-packaging and AMchip submissions to TSMC MICROTEST - test setup for AMchip massive production tests

Presented by Steve Myers to SLHC-PP

Workplan at review time (Dec. 2010)


- 2012 or 2013 installation of all Hola2 during long shutdown Substitute them in small bunches, reconnect to TDAQ & test;
 FTE: 2 months, may be more. Procedure to be established with ID people
- 2013 enlargement of vertical slice to cover the barrel first (8 or 16 PUs) *FTE: 4x8 months?*
- 2013-2014 data taking
- 2015 extension to the forward/backward detector regions FTE: 3x5 months?
- 2015-2016-2017 increase computing power as needed FTE: 3x4 months?

LHC Time-line (CERN DG at ICHEP 2012)

(See also DG New Year Presentation on 6th Jan 2013)

https://indico.cern.ch/getFile.py/access?resId=0&materialId=slides&confId=219327

2009	Start of LHC	
	Run 1: 7 and 8 TeV centre of mass energy, luminosity ramping up to few 10 ³³ cm ⁻² s ⁻¹ , few fb ⁻¹ delivered	
2013/14	LHC shut-down to prepare machine for design energy and nominal luminosity	
	Run 2: Ramp up luminosity to nominal (10^{34} cm ⁻² s ⁻¹), ~50 to 100 fb ⁻¹	(Could go further and need to worry
2018	Injector and LHC Phase-I upgrades to go to ultimate luminosity	about high μ before going to 25ns)
	Run 3: Ramp up luminosity to 2.2 x nominal, reaching ~100 fb ⁻¹ / year accumulate few hundred fb ⁻¹	(We assume up to 3×10 ³⁴ cm ⁻² s ⁻¹ and 25ns, so should
~20 22	Phase-II: High-luminosity LHC. New focussing magnets for very high luminosity with levelling	plan for µ up to 81)
	Run 4: Collect data until > 3000 fb ⁻¹	
2030		2

