

中国科学院高能物理研究所 INSTITUTE OF HIGH ENERGY PHYSICS

Preliminary study with CGEM inner detector at BESIII

Dong Mingyi, Wang Liangliang, Xiu Qinglei

2013.04.17

- Introduction
- Preliminary simulation
- Preliminary reconstruction
- Conclusion

Introduction

- BESIII MDC inner detector
 - Beam related background
 - Aging problem
- Possible inner detector candidate:
 - CGEM(Cylindrical Gas Electron Multiplier)
 - rad hard: up to 2.2 C/cm²
 - Expertise from KLOE2 and CERN
 - Faster construction
 - ... (for details, please see Adriano's talk)

GEM: principle of operation

The GEM (Gas Electron Multiplier) [F.Sauli, NIM A386 (1997) 531] is a thin (50 μ m) metal coated by a kapton foil perforated by a high density of holes (70 μ m diameter, pitch of 140 μ m) \rightarrow standard photo-lithographic technology.

By applying 400-500 V between the two copper sides, an electric field as high as \sim 100 kV/cm is produced into the holes which act as multiplication channels for electrons produced in the gas by a ionizing particle.

Gains up to 1000 can be easily reached with a single GEM foil. Higher gains (and/or safer working conditions) are usually obtained by cascading two or three GEM foils.

(This slice from Italian group)

Preliminary simulation

Preliminary simulation

CGEM parameters

	4 layers (type I)	3 layers (type I)	3 layers (type II)
R _{inner} (Layer 0)		7.77cm	
R _{inner} (Layer 1)	10.6cm	12.02cm	12.64cm (type II)
R _{inner} (Layer 2)	13.44cm	-	
R _{inner} (Layer outmost)		16.27cm	
Material budget (X_0)	1.56%	1.17%	1.17%

Geant4 Model of CGEM

Yellow: Honeycomb Support (Nomex) Blue: Cathode (Cu, Kapton) White: Work Gas of Gem (Ar:CO₂=70:30) Green: Gem Foil (Cu, Kapton) Red: Readout Anode (Cu, Kapton, Al Shielding) Grey: Carbon Fiber Support

Detail Structure of CGEM Layer

Single Mask Gem Foil, Single conical hole structure Hole diameter: 70-60 um The larger section of the holes facing the cathode. Hole Pitch: 140um

Preliminary reconstruction with CGEM inner detector

Readout	$\sigma_{r\phi}(\mu m)$	σ_{z} (µm)
Digital readout (Beam test @2009)	330	400
Analog readout (magnetic field effect avoided)*	80	150

* Taken as expected spatial resolution

MC sample and Residual distribution

Single particle MC sample (no background mixed): π⁻ |cosθ|<0.8, p_{tot}: ~0.2GeV/c, ~0.6GeV/c, ~1.0GeV/c

P _{tot} (GeV/c)	0.2	0.6	1.0
$\sigma_p(MDC)$ (MeV)	0.89 (100%)	2.53 (100%)	5.59 (100%)
σ_p (CGEM 4 layers, type I)	0.91 (+2.2%)	2.52 (-0.4%)	5.34 (-4.5%)
σ_p (CGEM 3 layers, type I)	0.89(+0%)	2.43 (-3.9%)	5.40 (-3.4%)
σ_p (CGEM 3 layers, type II)	0.89(+0%)	2.51 (-0.8%)	5.30 (-5.2%)

P _{tot} (GeV/c)	0.2	0.6	1.0
$\sigma_r(MDC)$ (µm)	622 (100%)	215 (100%)	168 (100%)
σ_r (CGEM 4 layers, type I)	652 (+4.8%)	230(+7.0%)	169 (+0.6%)
σ_r (CGEM 3 layers, type I)	650 (+4.5%)	224 (+4.2%)	170 (+1.2%)
$\sigma_{\rm r}$ (CGEM 3 layers, type II)	664 (+6.7%)	228(+6.0%)	166(-1.2%)

P _{tot} (GeV/c)	0.2	0.6	1.0
$σ_z(MDC)$ (μm)	2020 (100%)	1531 (100%)	1539 (100%)
σ_z (CGEM 4 layers, type I)	772 (-61.8%)	336 (-78.1%)	266 (-82.7%)
σ_z (CGEM 3 layers, type I)	757(-62.5%)	319 (-79.2%)	263 (-82.9%)
σ_z (CGEM 3 layers, type II)	742(-63.3%)	327 (-78.6%)	270 (-82.5%)

CGEM inner detector (VS MDC inner detector)

- Improves dz resolution significantly (by a factor of 2.6~6)
- Comparable dr resolution
 (~5% poorer for low momentum tracks)
- Comparable momentum resolution
 (~5% better for high momentum tracks)

Backups

Mismatch of material budgets between simulation and reconstruction!

P _{tot} (GeV/c)	0.2	0.4	1.0
$\sigma_p(MDC)$ (MeV)	0.89 (100%)	2.53 (100%)	5.59 (100%)
σ _p (CGEM 4 layers, type I) (In last talk)	1.72 (+93%)	2.62 (+3.6%)	5.58 (-0.18%)
σ_p (CGEM 4 layers, type I)	0.91 (+2.2%)	2.52 (-0.4%)	5.34 (-4.5%)
σ_p (CGEM 3 layers, type I)	0.89(+0%)	2.43 (-3.9%)	5.40 (-3.4%)
σ_p (CGEM 3 layers, type II)	0.89(+0%)	2.51 (-0.8%)	5.30 (-5.2%)

P _{tot} (GeV/c)	0.2	0.6	1.0
$σ_r(MDC)$ (μm)	622 (100%)	215 (100%)	168 (100%)
σ _r (CGEM 4 layers, type I) (In last talk)	729 (+17%)	262 (+22%)	177(+5.4%)
σ_r (CGEM 4 layers, type I)	652 (+4.8%)	230(+7.0%)	169 (+0.6%)
σ_r (CGEM 3 layers, type I)	650 (+4.5%)	224 (+4.2%)	170 (+1.2%)
σ_r (CGEM 3 layers, type II)	664 (+6.7%)	228(+6.0%)	166 (-1.2%)