GEM Digital (KLOE) and Analog (COMPASS) readout & BesIII readout requirements (DAQ & FEE)

Outline

- 1. GEMs main parameters
 - Gain
 - Discharges
 - Cluster multiplicity
- 2. GEM Digital Readout (KLOE IT)
 - readout electrodes
 - layer instrumentation
 - HV sectors
 - *HV distribution network*
 - readout plane details
 - FEE integration
 - HV & FEE chain
 - readout chain
- 3. GEM Analog Readout (COMPASS)
 - readout electrodes
 - chambers
 - position accuracy
 - *efficiency vs track multiplicity*
 - time measurements accuracy
 - APV 25 front-end

- 4. GEM operation in magnetic fields
 - charge broadening (simulation)
 - Test beam setup
 - resolution
 - efficiency
 - cluster size
- 5. BES IT DAQ & FEE requirements
 - DAQ requirements
 - 2D readout
 - C_{STRIPS} effect on SNR
- 6. Conclusions

GEMs

GEM: Triple GEM

BESIII GEM LNF Meeting – April 2013

GEM: gain and discharge probability Multi-GEM Detectors
Leszek Ropelewski CERN PH-DT2-ST & TOTEM
TOTEM GEM detectors for tracking and triggering

Disch S-D-TGEM ArCO270-30 bis 5 10-3 11/9/00 External collimated a source **Discharge probability** Ar-CO, 70-30 Multiple structures provide equal gain at $4 10^{-3}$ Equal ΔV_{GEM} lower voltage. The discharge probability on exposure to 3 10 a particles is strongly reduced. TGEM 2 10-3 DĠEM SGEM S-D-T GEM equvolt-gain bis 1 10-3 10⁵ Effective Gain TGEM 0 10⁰ 10^{2} 10³ 10^{4} 105 106 DGÉM Effective Gain 104 10³ SGÉM 10^{2}_{300} 350 400 450 500 550 $\Delta V_{\text{gem}}(V)$

TOTEM GEM detectors for tracking and triggering Leszek Ropelewski CERN PH-DT2-ST & TOTEM

Fast Electron Signal

GEM: strips induced signal

TOTEM GEM detectors for tracking and triggering Leszek Ropelewski CERN PH-DT2-ST & TOTEM

Cluster Charge Distribution

Very good multi-track resolution

Requires high density of readout channels

Digital Readout - KLOE IT

KLOE2 IT - readout electrodes

- 4 independent tracking layer
- XV readout strips
 - 25-30° stereo angle (depending on the layer)
 - X strips (r- φ coordinate): 650 μ m pitch 250 μ m width 694 mm length \rightarrow C \approx 100 pF
 - V strips (z coordinate): 650 μ m pitch (V-pads connected through vias) length range: 1÷773 mm \rightarrow C \approx 1-200 pF
 - Overall resolution: σ_{ro} = 200 μ m σ_z = 500 μ m
- ≈ 30k readout channels
- Strip signals readout through a 120-pin connectors (each connector collects 40 X strips and 80 V strips)

3 foils spliced without overlap: kapton strips are glued on the back of head-to-head joints

KLOE2 IT - layer instrumentation

The"1st"CGEM'layer'completed"

KLOE2 IT - X strips and HV sectors

Layer'2/Layer'3'Test'with"90Sr"Source'(II)"

KLOE2 IT - V strips and HV sectors

Layer'2/Layer'3'Test'with"90Sr"Source'(III)"

KLOE2 IT - HV Distribution Network

KLOE2 IT – Readout Plane (Detail)

KLOE2 IT - FEE Integration

Readout (XV) plane connectors

HV distribution must be

carefully designed

KLOE2 IT - HV & FEE chain (I)

A. Aloisio et al., "An FPGA Based General Purpose DAQ Module for the KLOE-2 Experiment" Journal of Physics: Conference Series **331** (2011) 022033

Analog Readout - COMPASS

- X-COORDINATE
- Due to diffusion the charge cloud collected on the readout board is bigger than the strip width (≈ 3.5 x pitch) and a weighting method is used for calculate the exact track position in two dimensions
- Every single strip versus the other readout coordinate acts as a plate capacitor. With the permittivity ε =3.9 of Kapton and an area of 2.27·10⁻¹cm², **this capacitance is 15.7 pF**

COMPASS: chambers

A GEM detector for the COMPASS experiment

S. Bachmann, A. Bressan^D, A. Placci, L. Ropelewski and F. Sauli.

- position resolution $\sigma = 40 \mu m$;
- time resolution FWHM = 18ns;
- plateau length in presence of MIPs from S/ N= 20 up to S/ N 10³, i.e. a 150V plateau;
- maximum gain for 5.9 keV Fe X-rays \Box 10⁵;
- maximum gain for 6.4 MeV α particles above 10⁴ without detector breakdown;
- maximum gain for a rate of 5 × 10⁵ 5.9 keV Xrays converted /mm² above 5 × 10⁴;
- no aging up tp 12 mC/ mm².

COMPASS: position accuracy

Position Accuracy

COMPASS: time measurement accuracy

Time Resolution

Ar/CO₂=70/30

Time resolution: computed from charge in three consecutive samples (at 25 ns intervals) using APV electronics.

B. Ketzer and Q. Weitzel (COMPASS)

COMPASS: efficiency

- Low intensity beam: $5 \cdot 10^6 \, \mu^+/{
 m s}$
- Scan in steps of 50 V around nominal G = 8000
- Hit required within $\pm 1 \,\mathrm{mm}$ of expected trajectory
- Background correction: $\varepsilon_{app} = \varepsilon_{real} + (1 - \varepsilon_{real}) \cdot b$
- Plateau reached for all 20 detectors
- SNR at full efficiency ~ 18
- Single plane: $\langle \varepsilon_{1\mathrm{D}} \rangle = 98.5\%$
- 2D (space point): $\langle \varepsilon_{2D} \rangle = 97.5\%$
- Losses due to spacer grid: 1.2-1.5%

COMPASS: front end (I)

APV25: ASIC $(0.25 \,\mu\text{m} \text{ technology})$

- Preamplifier + shaper ($\sim 50 \, \mathrm{ns}$ peaking time)
- Sampling at $40 \,\mathrm{MHz}$
- Analogue pipeline: 192 memory cells / channel
- 31 samples FIFO \Rightarrow Latency $4\,\mu s$
- MUX output of 3 samples
- Double diode clamp & AC coupling

Running Experience with the COMPASS Triple GEM Detectors – Bernard Ketzer

BAV99 C_{d} GEM readout Protection Charge 50ns CR-RC 192-cell analogue strips circuit preamplifier shaper pipeline Differential 220 pF Anode and cathode connected to GND output stage NO DC into preamplifier 128:1 multiplexer Charging up of strips avoided by diode leakage currents

G. Felici

СОМРА

COMPASS: front end (II)

Bonding

Frontend Hybrid with APV25 chip, S. Martoiu, CERN

7

GEM operation in magnetic field

Magnetic field: charge broadening (sim.)

Design and Construction of a cylindrical GEM detector as the Inner Tracker device of the KLOE-2 experiment - Gianfranco Morello on behalf of Frascati, Bari and Cosenza groups

Effect of magnetic field

At test beam we used Goliath magnet, B field up to 1.5 T The chambers were filled with **Ar/CO2**

A triple GEM (3/2/2/1) was built with ANSYS and simulation of electrons drift motion with 0.5 T (the foreseen KLOE-2 magnetic field) was done with GARFIELD Ar/CO₂=70/30 B=0.5 T Mean Lorentz angle ($<\alpha_{L}>$) ~ 8°-9°

~700 um

Magnetic field (X-V angle = 40°): resolution

Design and Construction of a cylindrical GEM detector as the Inner Tracker device of the KLOE-2 experiment - Gianfranco Morello on behalf of Frascati, Bari and Cosenza groups

Resolution in X plane (bending plane)

Magnetic field (X-V angle = 40°): efficiency

Design and Construction of a cylindrical GEM detector as the Inner Tracker device of the KLOE-2 experiment - Gianfranco Morello on behalf of Frascati, Bari and Cosenza groups

Magnetic field (X-V angle = 40°): cluster size as the Inner Tracker device of the KLOE-2 experiment

Design and Construction of a cylindrical GEM detector - Gianfranco Morello on behalf of Frascati, Bari and Cosenza groups

BES IT DAQ & FEE requirements

BES IT: DAQ requirements

1) Level-1 trigger rate (average): 1 a 2 kHz

2) Dead time: 4 μ s

3) Latency: 8 μs +/- 0.5 μs

4) Event size: 12 kB (including ZDD)

5) System (distributed clock) \approx 42 MHz (3 bunch crossings - 3x8ns)

• Counters to check events alignment ? Timestamp ?

6) Offline t₀ reconstruction

BESIII IT: 2D readout

Main requirements:

- Minimize electrode capacitance to reduce series noise contribution
 - Small width strips
 - Special strips design to reduce X-V C_{COUPLING}
 - GND plane far from the anode
- Minimize XV views crosstalk
 - Special strip design to reduce X-V coupling
 - GND plane near to the anode

STRIPS	COMPASS		KLOE IT		BES IT (I)		BES IT (X view)	
Width	350μ	80μ	250μ		350μ	80μ	350μ	80μ
Pitch	400μ		650µ		650μ		650µ	
Capacitance	≈ 17 pF		X ≈ 100 pF	V ≈ 1 ÷ 200 pF	≈ 41 pF		X _{ss} ≈41 pF	X _{SG} ≈ 41 pF
Ground distance	≈ 3 mm (?)		≈ 200µ		≈ 3 mm		≈ 200µ	

BESIII IT: C_{STRIPS} effect on SNR (I)

$Q_{STRIP} \approx 6 \text{ fC}$ (average, NO gas gain fluctuations)

- Ar/CO2 (70/30)
- G = 8000
- Factor 1/2 because the two view
- Factor 1/3 because the strip multiplicity

BES IT: C_{STRIPS} effect on SNR (III)

BES IT: readout conclusion (if any ...) and open questions

- The experience with the KLOE IT has shown that the preamplifier and the shaper must be carefully designed to maximize readout SNR for $C_D > 20 \text{ pF}$
- A custom device is required for analog strips readout (mainly because the $\approx 8 \,\mu s$ DAQ latency and the foreseen value of C_D)
 - 64/128 channels board
 - discharge protection network
 - charge measurement resolution ?
 - time measurement resolution ?
 - *latency buffer up to 8 μs*
 - Serial data readout (analog or digital)
- XV anode strips readout electrode must be designed to minimize parasitic capacitance
- XV crosstalk must be minimized as well
 - new strip size/geometry?
- Radiation background ? Do we need rad-tol devices near to the detector ? Probably NO, but ...

BES IT: Example of 2D optimized readout

A.Bondar et al., Performance of the triple-GEM detector with optimized 2-D readout in high intensity hadron beam

Spares

Spares: KLOE DAQ timing

Spares: VFAT chip

CMS GEM Upgrade Workshop III 18-20 April 2012

- Stefano Colafranceschi

The VFAT(TOTEM) is a digital on/off chip for tracking and triagering with an adjustable threshold for each of the 128 channels; it uses 0.25µm CMOS technology and its trigger function provides programmable "fast OR" information based on the region of the sensor hit. **DIGITAL AND SYNCRONOUS** $i_{s}(t)$ 8 Sector LVDS O/P Trigger building Fast"OR" **FAST OR Trigger** Synchronisation monostable output Shaper Pro artit pulse stretcher Charge 1/2 Data Storage Mask MS Folicity and Transmission Threshold 6.4µs channels Digital ANALOG AND Synchronization Data Packet **ASYNCRONOUS** And Time stretching Cantod π (LVIA, RySpic, CalPube, BCO)

Spares: KLOE DAQ timing

Some results from COMPASS

Cluster size distribution for 80 μm and 350 μm wide strips

