$\tau \rightarrow \mu \gamma$ at Super taucharm

Vladimir Druzhinin BINP, Novosibirsk

Workshop on Tau Charm at High Luminosity 26-31 May 2013, La Biodola, Italy

Statistics

B factories: $\sigma(e+e- \rightarrow \tau+\tau-) \approx 0.9 \text{ nb} \Rightarrow 10^9 \tau \text{ pairs}$ Super B factory: $7 \times 10^{10} \tau \text{ pairs}$

LFV decay $\tau \rightarrow \mu \gamma$

- Current best limit: $4.4{\times}10^{-8}$ by BaBar with $5{\times}10^8~\tau$ pairs
- Super-B: $7 \times 10^{10} \tau$ -pairs $\rightarrow (2 \div 4) \times 10^{-9}$ - ISR background from $e^+e^- \rightarrow \tau^+\tau^-\gamma$
 - Upper Limit $\propto 1/\sqrt{L}$
- tau-charm factory with $3 \times 10^{10} \tau$ pairs may has similar or better sensitivity

$\tau \rightarrow \mu \gamma$: background sources

The process $e^+e^- \rightarrow \tau^+\tau^-\gamma$, dominant background source at Y(4S), does not contribute below 2E $\approx 4m_{\tau}/\sqrt{3} \approx 4.1$ GeV.

$\tau {\rightarrow} \mu \gamma : \textbf{background sources}$

- τ decays, direct ($\tau^+ \rightarrow \pi^+ \pi^0 v_{\tau}$) and combinatorial
- QED processes: $e^+e^- \rightarrow \mu^+\mu^-\gamma\gamma$, $e^+e^- \rightarrow e^+e^- \mu^+\mu^-\gamma$
- Continuum hadron production $e^+e^- \rightarrow qq$
- $\psi(2S)$ decays
- D-meson decays

Background from τ decays is studied in A.V.Bobrov and A.E.Bondar, arXiv:1206.1909, will be published in "Vestnik NGU".

MC simulation

- Smeared generator level MC (TAUOLA)
- Acceptance: 20° < θ < 160 °
- Charged tracks: $\Delta p_T/p_T = 0.5\%$ at 1 GeV/c
- Photons

- Threshold 20 MeV
- Shower separation 7°
- -Energy resolution: 1.5% or 2.5% at 1 GeV

MC simulation

- For most important background decay mode $\tau^+ \rightarrow \pi^+ \pi^0 v_{\tau}$, the form factor in TAUOLA was modified according recent Belle measurement.
- The signal decay $\tau \rightarrow \mu \gamma$ is simulated with the angular distribution $1+\alpha(nP)$, where **n** is the muon direction, and **P** is the τ polarization vector.

Selection criteria

Tag side

Leptonic modes:

$$E_{mis} = 2E_{beam} - E_{\mu} - E_{\gamma} - E_{l}^{tag}$$

$$m_{\mu\nu\nu}^{2} = (2E_{beam} - E_{l}^{tag} + E_{\gamma})^{2} - (\vec{p}_{l}^{tag} + \vec{p}_{\gamma})^{2}$$
Semileptonic modes:
$$m_{mis}^{2} = (2E_{beam} - E_{h}^{tag} - E_{\mu} - E_{\gamma})^{2} - (\vec{p}_{h}^{tag} + \vec{p}_{\mu} + \vec{p}_{\gamma})^{2}$$

$$E_{mis} = 2E_{beam} - E_{\mu} - E_{\gamma} - E_{h}^{tag}$$

$$m_{\mu\nu}^{2} = (2E_{beam} - E_{h}^{tag} + E_{\gamma})^{2} - (\vec{p}_{h}^{tag} + \vec{p}_{\gamma})^{2}$$
...

Direct background

- $\tau^+ \rightarrow \mu^+ \gamma \nu_{\mu} \nu_{\tau}$, no events selected
- $\tau^+ \rightarrow \pi^+ \pi^0 \nu_{\tau}$

Signal: B($\tau \rightarrow \mu \gamma$)=10⁻⁹, N_{$\tau\tau$}= 3.2 × 10¹⁰

E, GeV	σ _E /E=1.5%	σ _E /E=2.5%
3.686	25	22
3.77	24	21
4.17	16*	14*

 $N_{\tau\tau}$ = 3.2 × 10¹⁰

σ _E /E=1.5%	<i>e</i> ⁻	μ^-	π^-	$\pi^{-}\pi^{0}$	$\pi^{-}\pi^{+}\pi^{-}$	$\pi^{-}\pi^{0}\pi^{0}$
3.686 ГэВ	3.5	5.1	8.2	18.2	3.7	3.2
3.77 ГэВ	5.9	6.3	8.3	18.7	4.6	3.2
4.17 ГэВ	10.7	12.8	12.0	24.2	5.0	4.0
σ _E /E=2.5%						
3.686 ГэВ	18.5	16.0	34.7	72.0	15.4	11.4
3.77 ГэВ	26.6	29.3	48.0	96.8	21.3	15.8
4.17 ГэВ	43.4	45.9	55.7	106.3	21.6	15.6

10

Combinatorial background

 τ→e⁻ 	$v_e v_\tau$ tag		⁴ 2/2
- τ ⁺ τ ⁻ -	$\rightarrow \mu^+ \nu_\mu \nu_\tau + e^- \gamma \nu_e \nu_\tau$		20.1 Ge
- τ ⁺ τ ⁻ -	$\rightarrow \pi^+ \nu_\mu \nu_\tau$ + e ⁻ $\gamma \nu_e \nu_\tau$	misID	e ventr
 τ⁻→μ⁻ 	$v_{\mu}v_{\tau}$ tag		50 Si
- τ ⁺ τ ⁻ -	$\rightarrow \mu^+ \nu_\mu \nu_\tau + \mu^- \gamma \nu_\mu \nu_\tau$		
- τ ⁺ τ ⁻ -	$\rightarrow \pi^+ \nu_\mu \nu_\tau + \mu^- \gamma \nu_\mu \nu_\tau$	misID	
- τ ⁺ τ ⁻ -	$\rightarrow \mu^+ \nu_\mu \nu_\tau + \pi^- \pi^0 \nu_\tau$	misID	
- τ ⁺ τ ⁻ -	$\rightarrow \pi^+ \nu_{\tau} + \pi^- \pi^0 \nu_{\tau}$	double	misID

Combinatorial background

Combinatorial background

•
$$\tau^- \rightarrow \pi^- \pi^- \pi^+ \nu_{\tau} \operatorname{tag}$$

- $\tau^+ \tau^- \rightarrow \pi^+ \pi^0 \nu_{\tau} + \pi^- \pi^- \pi^+ \nu_{\tau}$
• $\tau^- \rightarrow \pi^- \pi^0 \pi^0 \nu_{\tau} \operatorname{tag}$
- $\tau^+ \tau^- \rightarrow \pi^+ \pi^0 \nu_{\tau} + \pi^- \pi^0 \pi^0 \nu_{\tau}$

Important parameters:

- $|M^2_{mis}| < 0.1 \, GeV^2$,
- 0.5 < E_{mis} < 1.0 GeV
- Different invariant masses

 $N_{\tau\tau}$ = 3.2 × 10¹⁰

		σ _E /E=1.5%	σ _E /E=2.5%	
	3.686 GeV	5.2	10.8	
	3.77 GeV	12.0	65.8	
	4.17 GeV	234.0	644.0	
The	$z \tau^{-} \rightarrow \pi^{-} \pi^{0} \pi^{0}$	$^{D} v_{ au}$ tag mod	e is not use	ed at 4.17 GeV

Results

Signal: B($\tau \rightarrow \mu \gamma$)=10⁻⁹, N_{$\tau\tau$}= 3.2 × 10¹⁰

	σ _E /E=1.5%	σ _E /E=2.5%
3.686 GeV	25	22
3.77 GeV	24	21
4.17 GeV	16*	14*

Pion (direct from $\tau^+ \rightarrow \pi^+ \pi^0 \nu_{\tau}$) background: $N_{\tau\tau} = 3.2 \times 10^{10}$

	σ _E /E=1.5%	σ _E /E=2.5%
3.686 GeV	60 (42)	214 (168)
3.77 GeV	126 (47)	454 (238)
4.17 GeV	130 (65)*	338 (273)*

Muon background: $N_{\tau\tau}$ = 3.2 × 10¹⁰

	σ _E /E=1.5%	σ _E /E=2.5%
3.686 GeV	7	10
3.77 GeV	9	14
4.17 GeV	12	18

Results

E (GeV)	σ (nb)	L (ab-1)	N _{ττ} (10 ¹⁰)
3.686	5.0	1.5	0.75
3.77	2.9	3.5	1.03
4.17	3.6	2.0	0.71
Total		7.0	2.49

	σ _E /E=1.5%	σ _E /E=2.5%
Signal (Br=10 ⁻⁹)	17	15
Muon background	7	11
Pion background	83	271
Expected 90% CL upper limit for Br	1.1×10 ⁻⁹	3.0×10 ⁻⁹
Expected 90% CL upper limit for Br with pion suppression by a factor of 30	3.3×10 ⁻¹⁰	5.1×10 ⁻¹⁰

FARICH concept

Focusing Aerogel RICH - FARICH

Employs aerogel with non uniform refractive index to minimize the contribution of the finite radiator thickness to Cherenkov angle measurement

T.Iijima et al., NIM A548 (2005) 383 A.Yu.Barnyakov et al., NIM A553 (2005) 70

FARICH system

- $\mu/\pi/K/p$ separation in the momentum range not covered by DC (dE/dx) and muon system
- Radiator:
 - 4-layer aerogel with n_{max} =1.07
 - Total area: 17 m²
- Photon detector:
 - SIPM (MPPC, DPC, ...)
 - Total area: 21 m²
 - ~10⁶ pixels with 4mm pitch
 - Cooling to reduce dark current
- Readout:
 - FPGA-based TDC

or

— Digital Photon Counter (Philips)

FARICH prototype beam test CERN PS/T10 beam channel, June 2012

Philips DPC array 20x20 cm²

- Sensors: DPC3200-22-44
- 48×48 pixels 3.2×3.9 mm² (amplitude channels)
- 576 timing channels: 4 pixels per on-chip TDC
- 4 levels of FPGA readout
- Operated at -40°C

18

Conclusion

- Background for the LFV decay $\tau \rightarrow \mu \gamma$ from other τ decays has been studied using fast MC simulation
- The upper limit 3×10^{-9} can be reached without π/μ separation and 5×10^{-10} with pion suppression by a factor of 30
- Such separation in the momentum range 0.5-1.5 GeV/c may be obtained with FARICH technique
- Work on analysis of other background sources is in progress.

32.6 mm

DPC is an Integrated "Intelligent" Sensor by Philips Digital Photon Counting

DPC3200-22-44 – 3200 cells/pixel DPC6400-22-44 – 6396 cells/pixel

FPGA

- Clock distribution
- Data collection/concentration
- TDC linearization
- Saturation correction
- Skew correction

<u>Flash</u>

- FPGA firmware
- Configuration
- Inhibit memory maps

