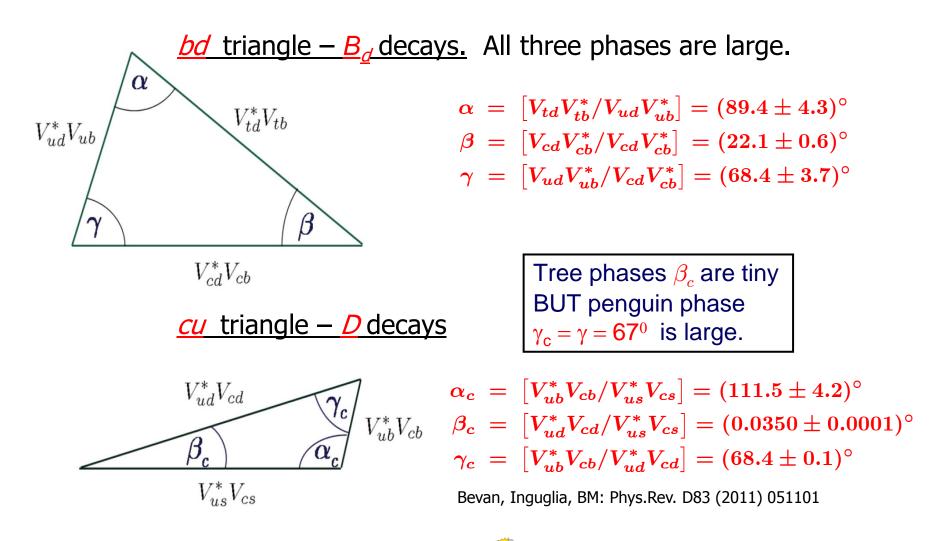
Constraining charm penguins

Brian Meadows

U. Cincinnati

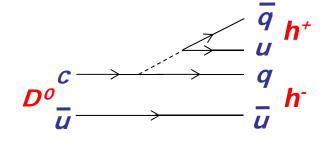
Prologue


AD 1999:

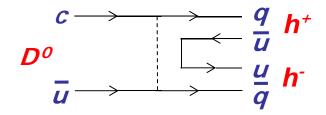
"A comprehensive program of CP studies in heavy flavour decays has to go beyond observing large CP asymmetries in nonleptonic B decays and finding that the sum of the three angles of the unitarity triangle is consistent with 180°. There are many more correlations between observables encoded in the KM matrix; those can be expressed through five unitarity triangles in addition to the one usually considered."

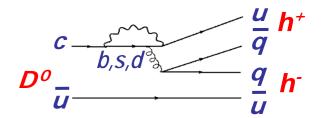
> -- Ikaros Bigi and A. Sanda http://arxiv.org/abs/hep-ph/9909479

Weak phases in B_d and D decays

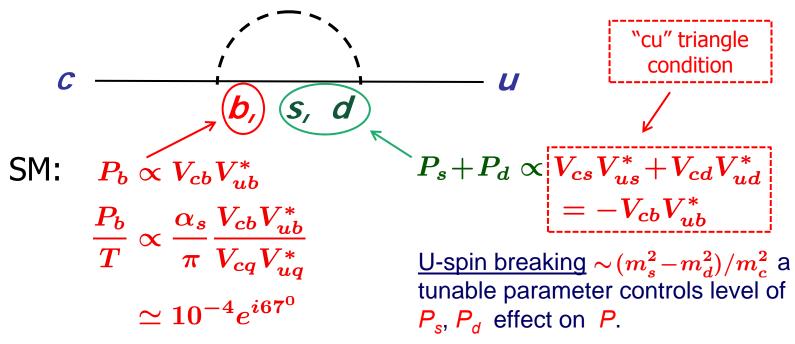

La Biodola, Elba, May 29, 2013

Brian Meadows, U. Cincinnati


- It is probably beyond experimental ability to measure β_c
 - But it is important to check that it is very small.
 - Also interesting to check other phases in the "cu" triangle.
- B-factory methods are possible approach.
 - Make *t*-dependent measurement of *CP* asymmetry for decays to *CP* eigenstates *TDCPV*. (Talk by G. Inguglia).
 - Comparison of *TDCPV* for 2 modes can also provide measurement of *D⁰* mixing phase.
 - Effect of penguins will need to be estimated an interesting measurement in any case.


$D^0 \rightarrow h^+ h^- (K^+ K^-, \pi^+ \pi^- \text{ or } \rho^+ \rho^-)$

Tree (T): CKM phase $\begin{cases} K^+K^-: \text{ zero} \\ \pi^+\pi^-: \beta_c \end{cases}$

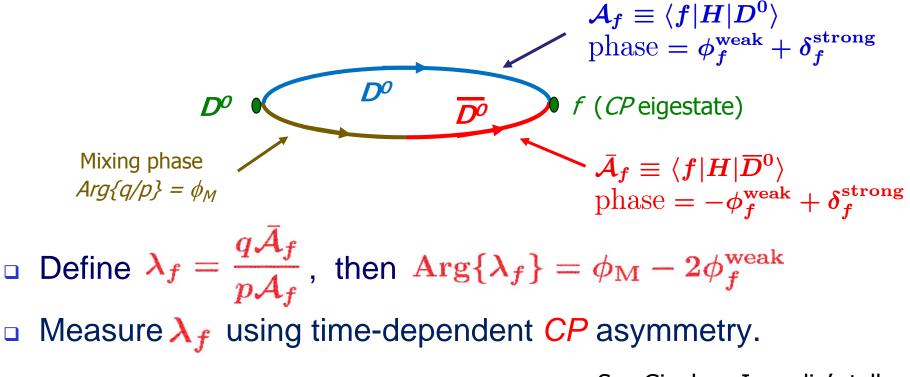

Exchange (E): CKM phase same as T $\downarrow \downarrow h^ So \rightarrow$ Combine T and E as " So \rightarrow Combine T and E as "T"

Penguin (P): CKM phase γ_c

Standard Model Penguins

Brod, Grossman, Kagan, Zupan, JHEP 1210 (2012) 161

SM Penguins:

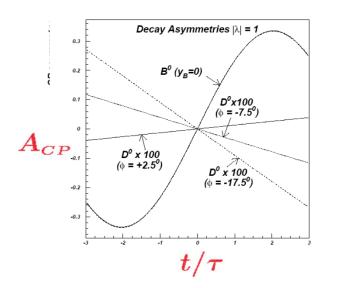

- Small could be larger with U-spin or QCD effects
- Weak phase large (~ γ)
- Change iso-spin $\Delta I = \frac{1}{2}$ ($c \rightarrow u$)

TDCPV in D⁰ decays

Bevan, Inguglia, BM, Phys.Rev. D84 (2011) 114009

Mixing allows *D⁰* and *D⁰* to interfere, exposing weak phases.
 Assume only T amplitude:

See Gianluca Inguglia's talk


La Biodola, Elba, May 29, 2013

Brian Meadows, U. Cincinnati

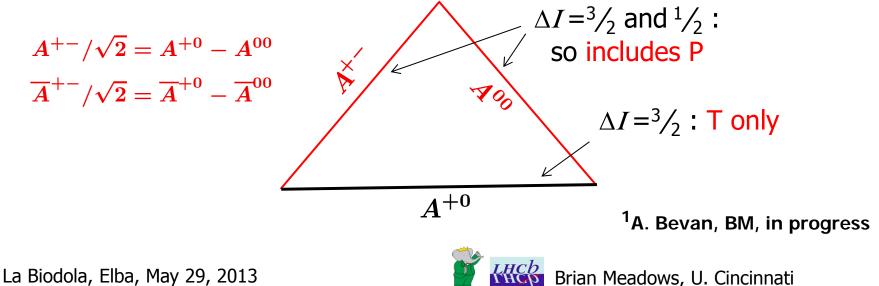
Time-Dependent CP Asymmetry (TDCP)

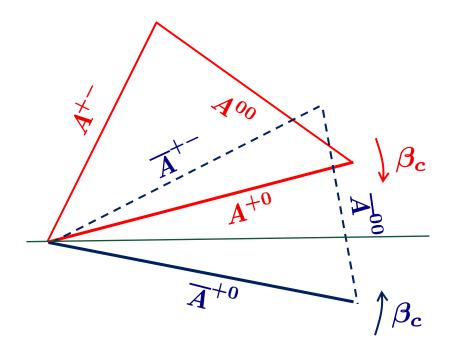
 $D^{0} \text{ and } \overline{D^{0}} \text{ oscillations leads to time-dependent CP asymmetry.}$ $A_{CP}(t) = \frac{\bar{\Gamma} - \Gamma}{\bar{\Gamma} + \Gamma} = -\eta_{CP} \frac{(1 - |\lambda_{f}|^{2}) \cos(x\Gamma t) - 2\Im(\lambda_{f}) \sin(x\Gamma t)}{(1 + |\lambda_{f}|^{2}) \cosh(y\Gamma t) + \Re(\lambda_{f}) \sinh(y\Gamma t)}$

Asymmetry grows with $|t/\tau|$:

- A_{CP} for D^0 is much smaller than for B^0 and is almost linear in *t*.
- $\hfill\square$ Slope of line \propto arg $\{\lambda_f\}$
- $\Box |A_{CP}| \text{ is largest for large } t$

Direct CPV shifts asymmetry at t=0


□ For
$$D^0 \rightarrow h^+h^-$$
 we expect $\arg\{\lambda_f\} = \phi_M - 2(\beta_c + \delta\beta_c)$
(h = π or ρ) Effect of Penguin


Penguins in $D \rightarrow \pi\pi$ or $\rho\rho$ decays

• Penguin contributions, $\delta \beta_c$, to $\operatorname{Arg}\{\lambda_f\}$ can be estimated from *I*-spin relations between the amplitudes for different charge modes:

		$D^0 o \pi^+\pi^-$		With similar definitions for CP
A^{00}	:	$D^0 o \pi^0 \pi^0$	$(ho^0 ho^0)$	Conjugate modes \overline{A} , $+-\overline{A}$, $\overline{00}$ \overline{A}^{+0}
A^{+0}	:	$D^+ o \pi^+ \pi^0$	$(ho^+ ho^0)$	conjugate modes A, A, A

□ Bose symmetry allows only $\Delta I = \frac{1}{2}$ and $\Delta I = \frac{3}{2}$ amplitudes. The former is possible for T and P but the latter only for T.

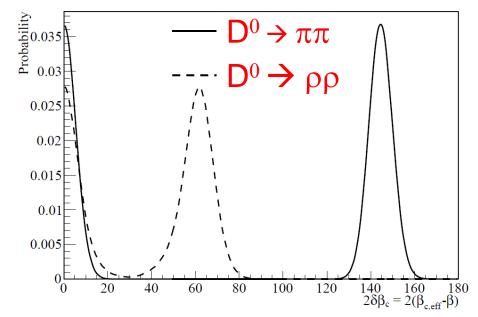
- □ In $D^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ only T contributes so phase of A^{+0} is + β_{c} and for \overline{A}^{+0} it is - β_{c}
- We rotate these to coincide Then re-label $\overline{\mathbf{A}}$'s as $\widetilde{\mathbf{A}}$'s

- The "+-" and "00" amplitudes include penguins.
- Any phase difference between
 A^{+-} and \tilde{A}^{+-} , therefore, is
 $2\delta\beta_c$ (due to penguins).

Apply to current charm data

Take current information on \pi\pi decay rates (from PDG):

Parameter	Measured Value
$ au_{D^0}$	$0.4101 \pm 0.0015~(\mathrm{ps})$
$ au_{D^{\pm}}$	$1.040 \pm 0.007~(\mathrm{ps})$
$\mathcal{B}(D^0 o \pi^+\pi^-)$	$(1.400\pm0.026) imes10^{-3}$
${\cal B}(D^{\pm} o \pi^+ \pi^0)$	$(1.19\pm 0.06) imes 10^{-3}$
${\cal B}(D^0 o \pi^0 \pi^0)$	$(0.80\pm 0.05) imes 10^{-3}$


From these values, we create ensembles of MC simulated amplitudes, based on their magnitudes and uncertainties.

We assume no *CP* asymmetry (yet, at least!)

For each sample, we compute $2\delta\beta_c$ noting the ambiguity in relative orientation between D^0 and \overline{D}^0 triangles.

• Both solutions are clearly visible in distributions of the resulting values of $\delta\beta_c$ with a width that suggests an uncertainty in $\delta\beta_c$ of about 2.7° for $\pi\pi$ and 4.6° for pp.

 When, eventually, an asymmetry becomes evident in any of these modes, the positions of the peaks may be more interesting.

$D \rightarrow \rho \rho$ decays

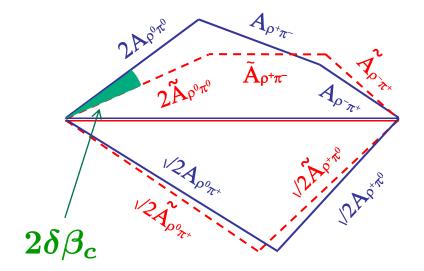
- □ Analysis is similar to that for $D \rightarrow \pi\pi$ but with complications. Again, there are mostly I=1 or I=2 final states. BUT
 - The ρ^0 interferes with ω^0 , introducing an I = 1 component
 - p resonances are broad and interfere with other resonances and each another.
 - Transversity amplitudes for pp have different CP and could have different penguin contributions. Therefore they require separate treatment.
- So proper amplitude analyses of $D \rightarrow 4\pi$ modes are required

Our study assumes that just one transversity state dominates and ignores all the above complications.

Current data on $D \rightarrow \rho \rho$

	Parameter	Measured Value [†]	
Small $\rho^0 \rho^0$ rate a hint that P is small ?	$egin{aligned} \mathcal{B}(D^0 & o ho^+ ho^-) \ \mathcal{B}(D^\pm & o ho^+ ho^0) \ \mathcal{B}(D^0 & o ho^0 ho^0) \ f_L(D^0 & o ho^+ ho^-) \ f_L(D^\pm & o ho^+ ho^0) \ f_L(D^\pm & o ho^+ ho^0) \ f_L(D^0 & o ho^0 ho^0) \end{aligned}$	$egin{aligned} (10.0\pm0.9) imes10^{-3\dagger}\ (11.3\pm0.8) imes10^{-3\dagger}\ (1.82\pm0.13) imes10^{-3}\ 0.83^{*}\ 0.83^{*}\ 0.69\pm0.08 \end{aligned}$	Large f_L justifies use of a single spin state.

[†]We assume that $D \rightarrow 4\pi$ channels quoted by PDG are dominated by resonant $\rho\rho$ *Theoretical assumption. See *BABAR*: Phys.Rev. D84 (2011) 114009.



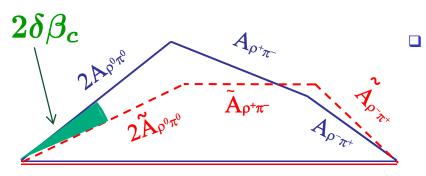
I-spin analysis of $D \rightarrow \rho \pi$ decays

• For $\rho\pi$, Bose statistics does not apply, so there are five *I*-spin amplitudes contributing to a pentagonal relationship:

$$2A^{00} + A^{+-} + A^{-+} = \sqrt{2}(A^{0+} + A^{+0})$$

$$\Delta I = \sqrt[3]{_2} \text{ only} \qquad \Delta I = \sqrt[3]{_2} \text{ only}$$

Neither side of the equation has a P component.



 D^0 amplitudes A have been rotated by weak decay phase $+\beta_c$ $\overline{D^0}$ amplitudes \widetilde{A} have been rotated by weak decay phase $-\beta_c$

$$ightarrow 2\deltaeta_{m c} = rg \, \widetilde{A}_{
ho^0\pi^0}/A_{
ho^0\pi^0}$$

β_c from $D^0 \rightarrow \rho \pi$ decays alone

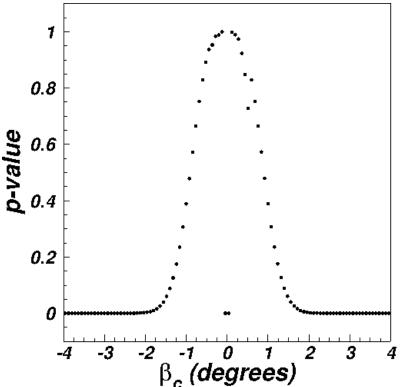
A time-dependent Dalitz plot fit to D^0 (and $\overline{D^0}$) $\rightarrow \pi^+\pi^-\pi^0$ decays provides all the required information.

[Quinn, Snyder, Phys.Rev.D48(1993) 2139-2144]

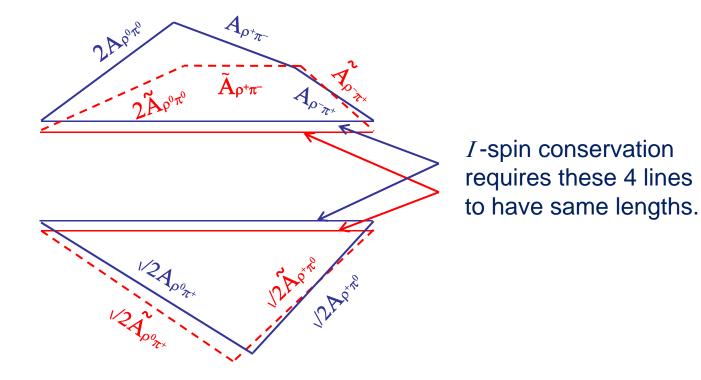
• This determines 26 invariant quantities related to $D^0 \rightarrow \rho \pi$ amplitudes

 $egin{array}{rll} A(D^0 op
ho^+ \pi^-) &:& A^{+-} &= T^{+-} e^{-ieta_{ ext{c}}} + P^{+-} \ A(D^0 op
ho^- \pi^+) &:& A^{-+} &= T^{-+} e^{-ieta_{ ext{c}}} + P^{-+} \ A(D^0 op
ho^0 \pi^0) &:& A^{00} &= T^{00} \; e^{-ieta_{ ext{c}}} + P^{00} \ q/p \; A(ar{D}^0 op
ho^+ \pi^-) &:& ar{A}^{+-} &= T^{-+} e^{+ieta_{ ext{c}}} + P^{-+} \ q/p \; A(ar{D}^0 op
ho^- \pi^+) &:& ar{A}^{-+} &= T^{+-} e^{+ieta_{ ext{c}}} + P^{+-} \ q/p \; A(ar{D}^0 op
ho^0 \pi^0) &:& ar{A}^{00} &= T^{00} \; e^{+ieta_{ ext{c}}} + P^{00} , \end{array}$

their magnitudes and relative phases, and their time-dependences.


• These determine β_c and the magnitudes and phases of the *P*'s and *T*'s.

Toy " β_c scan" on BaBar $D^0 \rightarrow \rho \pi$ data

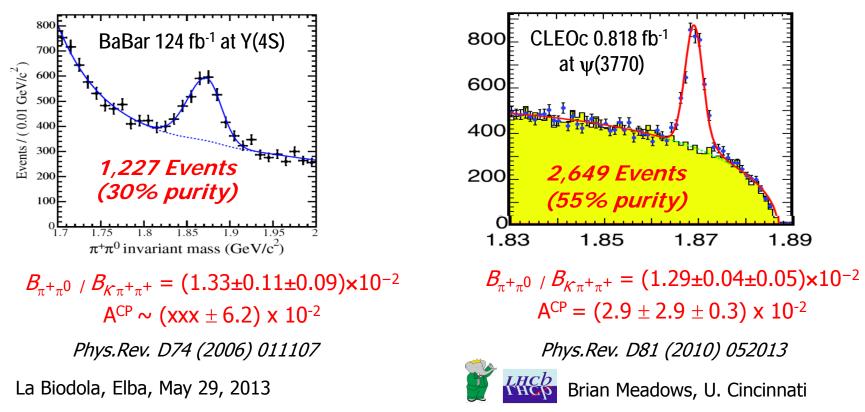

- Using the complex A's from the BaBar fit to time-integrated D⁰
 → 3π decays, we make fits for P and A at various β_cvalues and plot the p-value for the best fit at each point.
- Two peaks are observed, respectively at $\beta_c = 0$ and $\pi/2$, each with a half-width of ~ 1⁰.

Precision for $\beta_c \approx 1^\circ$

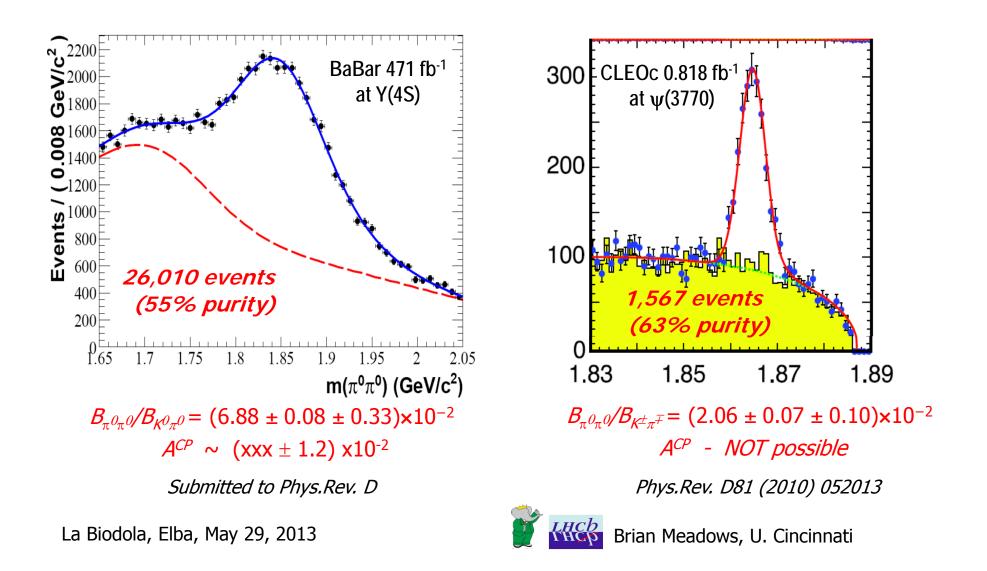
I-spin constraints in $D \rightarrow \rho \pi$ decays

Systematic Limitations

- These studies rely on experimental determination of the relative magnitudes of D⁰ and D⁺ decay amplitudes.
 - Systematic limitations should be from π⁰ efficiency and will probably be reached by Belle2 or by 5 ab⁻¹ τ-charm.


Modes	<u>#π⁰ required</u>	<u>Comment</u>
$\pi^+\pi^-$: $\pi^0\pi^0$:	$\pi^+\pi^0$ 0:1:1	Normalize $\pi^0\pi^0$ to $K_s\pi^0$
$ ho^+ ho^-$: $ ho^0 ho^0$:	$\rho^+ \rho^0 = 2:0:1$	3 distinct Dalitz plots
$ ho^+\pi^-: ho^0\pi^0:$	$ ho^+ \pi^0 = 0:0:0$	Use just $\pi^+\pi^-\pi^0$ Dalitz plot

 For BaBar, systematic is ~3% per π⁰.
 BUT, if e⁺e⁻γ (Dalitz) decays are used, this is only ~0.6% However we lose a factor 80 in sample size.



$D^+ \rightarrow \pi^+ \pi^0$ BF and asymmetry

- For $D^+ \rightarrow \pi^+ \pi^0$ (OR $\rho^+ \rho^0$) then $(\Delta I = 3/2)$ thus excluding any SM penguin contribution. *CP asymmetry in these decays would require NP !!*
- □ BaBar and CLEO measured this mode relative to $D^+ \rightarrow K^- \pi^+ \pi^+$

$\pi^0\pi^0$ BF and asymmetry

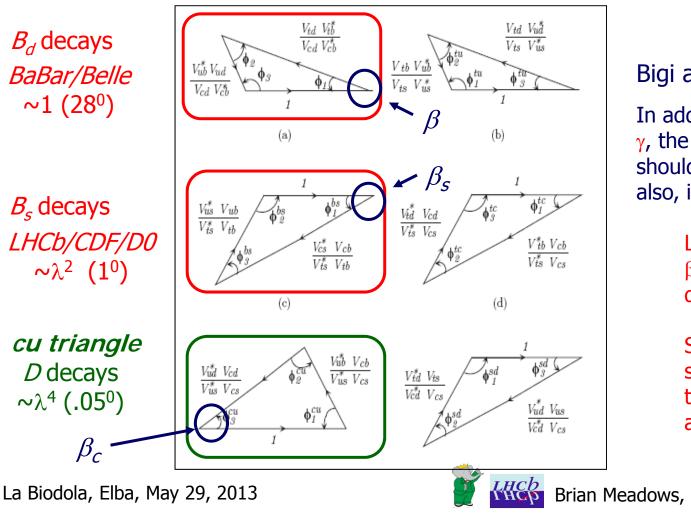
Projections for *A^{CP}* Measurements

- □ For $D^0 \rightarrow \pi^0 \pi^0$ BaBar measures BF, not A^{CP} which we estimate.
- For A^{CP} measurements, we observe that most systematic uncertainties cancel except for uncertainties in signal and background shapes.
 - So we assume these will shrink with the sqrt of data size (?)

		At $\psi(3770)$ %			At $\Upsilon(4S)$ %	
$A^{{\scriptscriptstyle CP}}(\%)$	LHCb	CLEOc	BES3	SuperB	BABAR	SuperB
	$5{ m fb}^{-1}$	$0.818{ m fb}^{-1}$	$10{ m fb}^{-1}$	$1 \mathrm{ab}^{-1}$	$481{ m fb}^{-1}$	$75 \mathrm{ab}^{-1}$
$\pi^+\pi^0$	_	± 3.0	± 1.0	± 0.1	± 6	± 0.27
$\pi^+\pi^-$	0.1?	—	—	—	± 0.6	± 0.04
$\pi^0\pi^0$	—	—	—	—	± 1.2	± 0.10
$\Delta A^{\scriptscriptstyle CP}$	± 0.07					± 0.05

Summary

- Time-integrated CPV asymmetries have yet to be seen but, when they are, a look at the effect of penguins should be possible with a precision within the 1-2 degree range.
- LHCb is working extremely well, and is clearly ready to lead the way in measurements of D decays with charged tracks,
 - but it will leave much for e⁺e⁻ machines to do with the modes with π^o's and other neutrals.
- Experiments at charm threshold have a particular role to play in studies with *D* decays with one or more π⁰ or γ, and should be optimized for this role.



Backup Slides

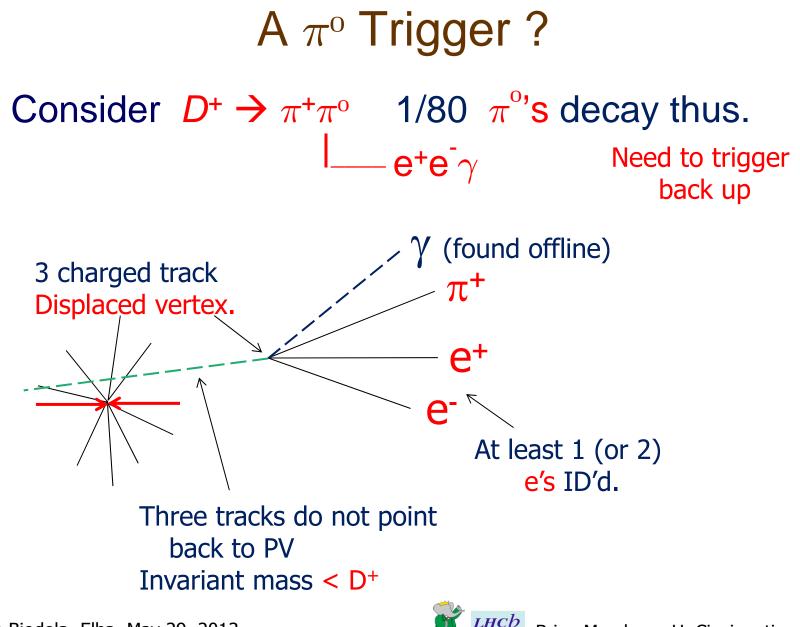
The triangles

See Bigi and Sanda, hep-phy/9909479 (1999)

Bigi and Sanda:

In addition to α , β and γ , the angles, β_c and β_s should be measured also, if possible.

> LHCb is working on β_{s} using $B_{s} \rightarrow \psi \phi(f^{0})$ decays.


SuperB and Belle2 should also be able to study $B_{s} \rightarrow \psi \eta^{(\prime)}$ at Y(5S)

Brian Meadows, U. Cincinnati

What is Interesting about Charm

- Charm was "invented" to account for small FCNC interactions in nature (GIM mechanism).
- □ In this scenario, for the <u>charm sector</u>,
 - Mixing is also greatly suppressed;
 - Many charm particle decays are also extremely small.
 - *CP* violation (*CPV*) is also expected to be small, mostly because weak phases are small (Arg{V_{cd}} ~ λ^4);
- With "SM backgrounds" so small, charm is a good place to look for new physics (NP).
- Charm also allows study of the role of the up-type quarks.

La Biodola, Elba, May 29, 2013

