

Dynamic Aperture for Tau Charm ST20_49

Simone Maria Liuzzo Università di Tor Vergata, INFN, ESRF

Non linear terms included in the calculations

Non linearities taken in account:

- Sextupoles
- Octupoles
- Drift description to higher order
- Fringe Fields in quadrupoles and dipoles with gradient (when indicated)

Tracking parameters in MADX and

Accelerator Toolbox(AT)

- MADX-PTC exact, kick-drift-kick, hard edge fringe in all magnets
- AT + Fringe in quadrupoles (and dipoles with gradient) + kinematic 1/8(p_x^2+p_y^2)^2 terms
- 50 steps in each magnet for integration.

$$H_{drift} = \frac{P_x^2 + P_y^2}{2} + \frac{(P_x^2 + P_y^2)^2}{8}$$

$$x^{f} = x^{i} + \left(P_{x} + \frac{P_{x}^{3}}{2} + \frac{P_{x}P_{y}^{2}}{2}\right)L$$
$$y^{f} = y^{i} + \left(P_{y} + \frac{P_{y}^{3}}{2} + \frac{P_{y}P_{x}^{2}}{2}\right)L$$

Tracking x-x'

Fringe fields on

Tracking y-y'

Fringe fields on

Tracking (x=y)-y'

Fringe fields on

Dynamic Apertures

- ON and OFF momentum, for RING_noff and RING_FF
- Horizontal Dynamic aperture vs Momentum
- Fringe fields effect on dynamic aperture
- Influence of Errors in the lattice
- Maximum amplitude X and Y vs tune
- Frequency Maps

Dynamic Aperture with and without FF

Dynamic Aperture on and off momentum

Dynamic Aperture with Fringe Fields

Dynamic Aperture with Errors

With fringe fields. With Errors. Tune changed with matching routine.

Dynamic Aperture at Best Points

Dynamic Aperture. Nturns: 512

Dynamic Aperture at Best Points

ST20_49 512 turns, no errors

Frequency Maps Without Final Focus

Curtesy of N. Carmignani Università di Pisa, ESRF

ST20_49 512 turns, no errors **Frequency Maps With Final Focus**

ST20_49 512 turns, with errors

Frequency Maps Without Final Focus

Curtesy of N. Carmignani Università di Pisa, ESRF

ST20_49 512 turns, with errors

Frequency Maps With Final Focus

Conclusion

- ST20_49 tracking requires the inclusion of fringe fields and kinematic terms, particularly influent in the QD0 and QF1.
- Energy acceptance at more than +-2%
- Effect of fringe field is mostly due to the FF doublet.
- Influence of errors (see next presentation)
- Dynamic apertures H 15 mm V 15 mm with FF
- DA vs Tune scan shows alternative points with larger apertures. True for various error seeds with correction.
- Frequency map show small detuning in all directions and small diffusion

Max Amplitude X and Y versus tune

No fringe fields. No Errors. Tune changed with matching routine.

Max Amplitude X and Y versus tune

With fringe fields. No Errors. Tune changed with matching routine.