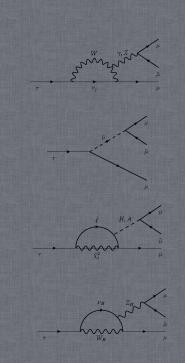
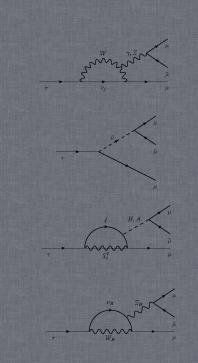
Preliminary results of

 $\tau \to \mu \gamma$


Alberto Lusiani^{1,2}, Marcin Chrząszcz^{3,4}

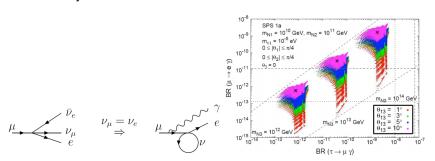
 $^{\rm 1}$ SNS , $^{\rm 2}$ INFN, $^{\rm 3}$ UZH, $^{\rm 4}$ IFJ PAN $28^{\it th}~{\rm May}~2013$



Motivation

SuperB vs SuperC

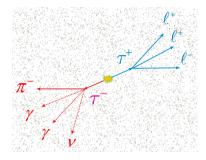
Studies done so far


MC studies

LFV hunting, "Who ordered that?" I. Rabi

The history of LFV dates back to the discovery of muon:

- After discovery of μ it was natural to think about it as an excited electron.
- Unless you have an other neutrino.

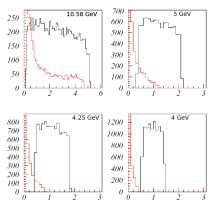

· Analogy to GIM mechanism.

A.Lusiani, M.Chrząszcz 2013 $\rightarrow u \gamma$ Motivation 3 / 11

Flavour wars, $\Upsilon(4S)$ vs $\psi(3770)$

At \mathcal{B} factories one did the following:

- Calculate the thrust axis.
- Divide the particles among two hemispheres.
- No possibility to mix tracks from one τ with other!
- We are making a kind of topological tag.


Flavour wars, $\Upsilon(4S)$ vs $\psi(3770)$

What about $\psi(3770)$?

- $\tau's$ are produced "almost" at rest \to No boost.
- Tracks mix hemispheres.
- No previous τ analysis done under this conditions.

Studies done so far

H.Hayashii (2008) emphasizes that close to the tau pair production threshold the ISR photon spectrum is limited to small energies and the overlap with the $\tau \to \mu \gamma$ signal photon spectrum tends to zero.

Studies done so far

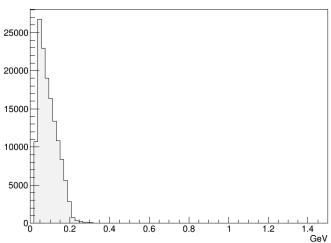
Preliminary report on a work-in-progress to estimate the sensitivity to $\tau \to \mu \gamma$ at a tau-charm factory with Monte Carlo simulated events

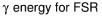
MC studies

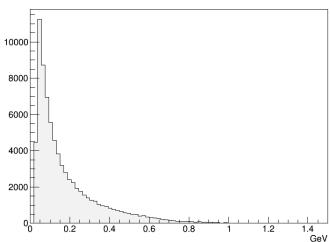
What we have done (not everything up to date):

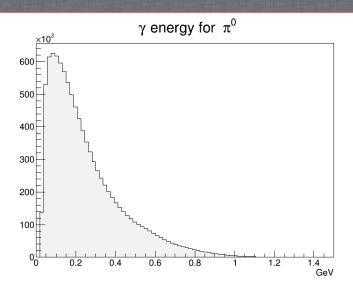
- Simulation done with FastSim 3.2.
- SuperB detector.
- SuperB beams, with $\beta \gamma = 0.28$.
- Simulated bck: $\tau\tau$ and continuum up to integrated luminosity of $1ab^{-1}$.
- CM energy $\psi(3770)$.
- Beam energies: 2.2 and −1.6GeV.

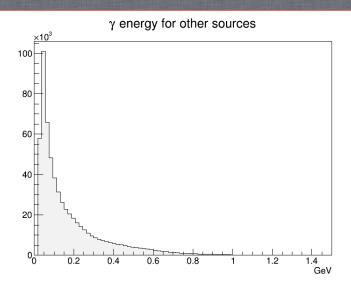
 $ightarrow \mu \gamma$ MC studies

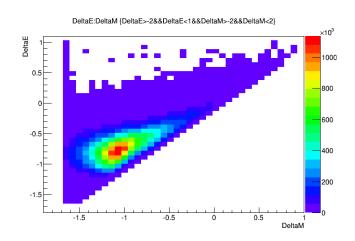

Preselection

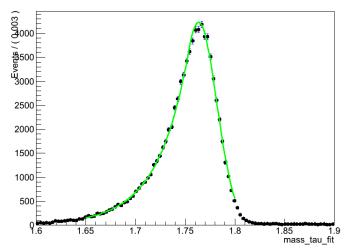

We demand from each event:


- Require events with just two charged tracks (85% of other (tag) au decays)
- τ reconstructed with energy constrain to CM.
- select tau candidates with:
 - muon ID(SuperB lists)
 - $E_{\gamma} > 50 MeV$ in CM.


 $ightarrow \, \mu \gamma$ MC studies 7 / $^{\circ}$






Background estimate in $\triangle E$ vs $\triangle M$

 $ightarrow \mu \gamma$ MC studies 9 / 11

Resolution

A RooPlot of "mass_tau_fit"

Resolution: $\approx 18 MeV$.

Preliminary conclusions

- · Analysis is ongoing.
- Completely different environment than $\Upsilon(4S)$.
- Need to somehow select/reconstruct/tag the other tau, otherwise the problem looks fatal.
- found few thousand background events in the signal window.
- Need to VETO π^0 .