

Alan Schwartz University of Cincinnati, USA

Workshop on Tau-Charm at High Luminosity 26-31 May 2013 La Biodola, Isola d'Elba, Italy

- motivation
- KEKB upgrade
- Belle II detector upgrade
- charm physics potential
- *τ* physics potential

Why a flavor factory in the LHC Era?

- A flavor factory studies processes that occur at 1-loop in the SM but may be O(1) in NP: FCNC, neutral meson mixing, CP violation. These loops probe energy scales that cannot be accessed directly (even at the LHC).
- If supersymmetry is found at the LHC, a crucial question will be: how is it broken. By studying flavor couplings, a flavor factory can address this.

A (super) flavor factory searches for NP by phases, CP asymmetries, inclusive decay processes, rare leptonic decays, absolute branching fractions. There is a wide range of observables with which to confront theory.

Why an e⁺e⁻ Machine?

- Low backgrounds, high trigger efficiency, excellent γ and π⁰ recontruction (and thus η, η', ρ+, etc. reconstruction), high flavor-tagging efficiency with low dilution, many control samples to study systematics
- Due to low backgrounds, negligible trigger bias, and good kinematic resolutions, Dalitz plots analyses are straightforward. Absolute branching fractions can be measured. Missing energy and missing mass analyses are straightforward.
- systematics quite different from those at LHCb. If true NP is seen by one of the experiments, confirmation by the other would be important.

Belle and Belle II run at KEKB:

A. J. Schwartz Workshop on Tau-Charm, Isola D'Elba Belle II Physics Prospects

3

Future: Belle-II Goal: 40 x present = 4×10^{10} BB pairs ... but how to do it?

4

How to achieve L~10³⁶? Super-KEKB

	Two options considered:	l (current) (amps)	β _y (mm)	Ę
	High current	9.4/4.1	3/6	0.3/0.51
chosen	Nano-beam (Raimondi for SuperB)	3.6/2.6	0.27/0.30	0.09/0.08
	KEKB achieved	1.8/1.45	6.5/5.9	0.11/0.06

5

A. J. Schwartz Workshop on Tau-Charm, Isola D'Elba Belle II Physics Prospects

6

The KEKB upgrade was fully approved by the Japanese government in December 2010. The KEKB groundbreaking ceremony was held in November, 2011. Super-KEKB and Belle-II are priorities of KEK.

• KEKB accelerator upgrade fully funded by Japan. Belle II detector half-funded by Japan, half by outside funding agencies. US contribution: quartz optics for barrel imaging time-of-propagation (iTOP) detector, and readout electronics for the iTOP and upgraded barrel muon detector (KLM). The DOE has stated that Belle II is their highest priority project for e^+e^- physics.

Accelerator upgrade on schedule to be completed in 2015; first beams will circulate then. [see details in Sugimoto-san's talk]

Detector commissioning scheduled to begin in spring, 2016. Numerous institutions have joined – overlap with Belle is ~50%.

- 4-year shut-down for upgrade of the accelerator and detector
 Start machine operation in 2015, data taking in 2016, reach 50 abil in ~202
- Start machine operation in 2015, data-taking in 2016, reach 50 ab^{-1} in ~2022

A. J. Schwartz Workshop on Tau-Charm, Isola D'Elba Belle II Physics Prospects

http://belle2.kek.jp

21 countries/regions, 76 institutions, ~480 collaborators (~200 from Europe)

B Dhysics	V(AS)				
D I liysics (W)	1(43)		Observable	B Factories (2 ab^{-1})	Super B (75 ab^{-1})
Observable	B Factories (2 ab^{-1})	$\operatorname{Super} B$ (75 ab^{-1})	$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
$\sin(2eta) \; (J/\psi K^0)$	0.018	0.005 (†)	$ V_{cb} $ (inclusive)	1% (*)	0.5%~(*)
$\cos(2eta)~(J/\psi~K^{*0})$	0.30	0.05	$ V_{ub} $ (exclusive)	8% (*)	3.0%~(*)
$\sin(2eta)~(Dh^0)$	0.10	0.02	$ V_{ub} $ (inclusive)	8% (*)	2.0% (*)
$\cos(2eta)~(Dh^0)$	0.20	0.04			
$Sig(J/\psi^{}\pi^{0}ig)$	0.10	0.02	$\mathcal{B}(B ightarrow au u)$	20%	4% (†)
$S(D^+D^-)$	0.20	0.03	$\mathcal{B}(B \to \mu \nu)$	visible	5%
$S(\phi K^0)$	0.13	0.02 (*)	$\mathcal{B}(B \to D \tau \nu)$	10%	2%
$S(\eta' K^0)$	0.05	0.01 (*)	-()		
$Sig(K^0_gK^0_gK^0_gig)$	0.15	$0.02\;(*)$	$\mathcal{B}(B \rightarrow e^{\alpha})$	150%	3% (+)
$S(K^0_{_S}\pi^0)$	0.15	0.02 (*)	$\mathcal{B}(B \to \mu_{f})$	20%	50%
$S(\omega K_s^0)$	0.17	0.03~(*)	$D(D \to w_{f})$	0.007 (+)	0.004 (+ -)
$S(f_0K_s^0)$	0.12	0.02 (*)	$A_{CP}(D \to \Lambda^{-}\gamma)$	0.007 (1)	0.004 (1 *)
			$A_{CP}(B \to \rho \gamma)$	~ 0.20	0.00
$\gamma (B \to DK, D \to CP \text{ eigenstates})$	a) $\sim 15^{\circ}$	2.5°	$A_{CP}(b ightarrow s\gamma)$	0.012 (†)	0.004 (†)
$\gamma \ (B \to DK, D \to \text{suppressed sta})$	tes) $\sim 12^{\circ}$	2.0°	$A_{CP}(b ightarrow (s+d)\gamma)$	0.03	0.006 (†)
$\gamma \ (B \to DK, D \to \text{multibody stat})$	tes) $\sim 9^{\circ}$	1.5°	$S(K^0_s\pi^0\gamma)$	0.15	$0.02\;(*)$
$\gamma \ (B \to DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°	$S(ho^0\gamma)$	possible	0.10
$lpha \; (B ightarrow \pi \pi)$	$\sim 16^{\circ}$	3°	$A_{CP}(B o K^*\ell\ell)$	7%	1%
$\alpha \ (B ightarrow ho ho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)	$A^{FB}(B \to K^*\ell\ell)s_0$	25%	9%
$lpha \; (B ightarrow ho \pi)$	$\sim 12^{\circ}$	2°	$A^{FB}(B \to X_{\ell}\ell\ell)s_0$	35%	5%
$\alpha \ (\text{combined})$	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)	$\mathcal{B}(B \to K v \overline{v})$	visible	20%
$2\beta + \gamma \left(D^{(*)\pm}\pi^{\mp}, D^{\pm}K_{s}^{0}\pi^{\mp} \right)$	20°	5°	$\frac{\mathcal{B}(B \to \pi \nu \bar{\nu})}{\mathcal{B}(B \to \pi \nu \bar{\nu})}$	-	possible

Charm m	nixing	and Cl	PV
Mode	Observable	$\Upsilon(4S)$	$\psi(3770)$
		(75 ab^{-1})	(300 fb^{-1})
$D^0 \rightarrow K^+ \pi^-$	x'^2	3×10^{-5}	
	y'	$7 imes 10^{-4}$	
$D^0 \rightarrow K^+ K^-$	y_{CP}	5×10^{-4}	
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	x	4.9×10^{-4}	
	y	3.5×10^{-4}	
	q/p	3×10^{-2}	
	ϕ	2°	
$\psi(3770) \rightarrow D^0 \overline{D}^0$	x^2		$(1-2) \times 10^{-5}$
	y		$(1-2) \times 10^{-3}$
	$\cos \delta$		(0.01 - 0.02)

B_{s} Physics @ Y	(5S)	
Observable	Error with 1 ab^{-1}	Error with 30 ab^{-1}
$\Delta\Gamma$	$0.16 \ {\rm ps^{-1}}$	$0.03~\mathrm{ps}^{-1}$
Γ	$0.07~\mathrm{ps}^{-1}$	$0.01 \ {\rm ps}^{-1}$
eta_s from angular analysis	20°	8°
$A^s_{ m SL}$	0.006	0.004
$A_{ m CH}$	0.004	0.004
${\cal B}(B_s o \mu^+ \mu^-)$	-	$< 8 imes 10^{-9}$
$\left V_{td}/V_{ts} ight $	0.08	0.017
$\mathcal{B}(B_s o \gamma \gamma)$	38%	7%
eta_s from $J/\psi\phi$	10°	3°
eta_s from $B_s o K^0 ar K^0$	24°	11°

11

+ τ decays, rare D decays, D_{sJ} , X, Y, Z studies, etc.

D⁰-D⁰ Mixing and CP Violation

- Direct CP Violation
 - Excited D_(s) Mesons
 - Semileptoníc Decays
 - CP and T-violating Asymmetries
 - D_s Decay Constant f Ds
- Two-body Hadronic D⁰ Decays
 - Charm Baryons
 - Rare and Forbidden Decays
 - X, Y, Z states, charm structure

- μv / ev branching fractions (tests of lepton universality)
- |V_{us}| determination
- Lepton-Flavor-Violating (LFV) upper limits

 τ physics:

- \checkmark \checkmark \bullet Wrong-sign semileptonic $D^0(t) \rightarrow K^+ l^- v$
measures $x^2 + y^2$, no DCS contamination \checkmark \checkmark \bullet Wrong-sign hadronic $D^0(t) \rightarrow K^+ \pi^$
 - measures $x' = x \cos \delta + y \sin \delta$, $y'=y \cos \delta x \sin \delta$
 - Decays to CP eigenstates: $D^0(t) \rightarrow K^+ K^-, \pi^+ \pi^$ measures y_{CP} , A_{K} , A_{π}
 - Dalitz plot analysis of $D^0(t) \rightarrow K^0 \pi^+ \pi^$ measures x, y
 - Dalitz plot analysis of $D^0 \rightarrow K^+ \pi^- \pi^0$ measures x", y"
 - ✓ Dalitz plot analysis of D⁰ → K⁰K⁺K⁻ measures y_{CP} (CLEO, Belle)
 Quantum correl. in e⁺e⁻ → ψ(3770) →D⁰D⁰(nπ⁰)
 - measures x^2 , y, R_D , $\cos\delta$. $\sin\delta$

$$egin{array}{rcl} \lambda & = & \displaystylerac{q}{p} \displaystylerac{\mathcal{A}_f}{\mathcal{A}_f} \, \equiv \, \left| \displaystylerac{q}{p}
ight| \, \sqrt{R_D} \, e^{i(\phi+\delta)} \ ar{\lambda} & = & \displaystylerac{p}{q} \displaystylerac{\mathcal{A}_{ar{f}}}{ar{\mathcal{A}}_{ar{f}}} \, \equiv \, \left| \displaystylerac{p}{q}
ight| \, \sqrt{\overline{R}_D} \, e^{i(-\phi+\delta)} \end{array}$$

$$\begin{split} \frac{N(D^0 \to f)}{dt} \propto e^{-\overline{\Gamma} t} & \left\{ R_D + \left| \frac{q}{p} \right| \sqrt{R_D} (y \cos \phi + \delta) - x \sin(\phi + \delta) \right] (\overline{\Gamma} t) + \left| \frac{q}{p} \right|^2 \frac{(x^2 + y^2)}{4} (\overline{\Gamma} t)^2 \\ &= e^{-\overline{\Gamma} t} \left\{ R_D + \left| \frac{q}{p} \right| \sqrt{R_D} (y' \cos \phi - x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{q}{p} \right|^2 \frac{(x'^2 + y'^2)}{4} (\overline{\Gamma} t)^2 \right\} \\ \frac{N(\overline{D}^0 \to \overline{f})}{dt} \propto e^{-\overline{\Gamma} t} \left\{ \overline{R}_D + \left| \frac{p}{q} \right| \sqrt{\overline{R}_D} y' \cos \phi + x' \sin \phi) (\overline{\Gamma} t) + \left| \frac{p}{q} \right|^2 \frac{(x'^2 + y'^2)}{4} (\overline{\Gamma} t)^2 \right\} \\ x' \equiv x \cos \delta + y \sin \delta \qquad y' \equiv y \cos \delta - x \sin \delta \\ & \left| \frac{|q/p|}{A_D} - \overline{R}_D \right| / (R_D + \overline{R}_D) \qquad CPV \text{ in mixing} \\ & CPV \text{ in the decay amplitude (direct CPV)} \end{split}$$

 ϕ CPV in mixed/direct interference

No ${\pmb{CPV}}\ ({\pmb{R}_D}=\overline{\pmb{R}}_D,\, |{\pmb{q}}/{\pmb{p}}|=1,\, {\rm and}\ \phi={\pmb{0}}){:}$

$${dN(D^0
ightarrow f)\over dt} ~\propto~ e^{-\overline{\Gamma}\,t} ~\left\{R_D^{} ~+~ \sqrt{R_D^{}}\,y'(\overline{\Gamma}t)^{} ~+~ {(x'^2+y'^2)\over 4}(\overline{\Gamma}\,t)^2
ight\}$$

A. J. Schwartz Workshop on Tau-Charm, Isola D'Elba Belle II Physics Prospects

14

Expected Uncertaintes (B. Golob):

Analysis	Observable	Uncertainty (%)		
		Now ($\sim 1.5 ~{ m fb}^{-1}$)	$\mathcal{L}=50~\mathrm{ab}^{-1}$	
$K^0_S\pi^+\pi^-$	x	0.211	0.10	
	$oldsymbol{y}$	0.186	0.08	
	q/p	32	9	
	${oldsymbol{\phi}}$	0.32 rad	0.07 rad	
$\pi^+\pi^-,K^+K^-$	y_{CP}	0.217	0.05	
	A_{Γ}	0.248	0.03	
	A_{CP}	0.240	0.07	
$K^+\pi^-$	x'^2	0.0195	0.009	
	y'	0.321	0.16	
	$A^{}_D$	3.5	1.7	
	R_D	0.013	0.0015	

Note: statistical error and some systematics scale by luminosity, but other systematics do not.

Note: statistical error and some systematics scale by luminosity, e.g., background PDF shapes, best-candidate selection bias, π^{\pm} charge bias, etc. Other systematics do not, e.g. alignment, error on luminosity...

Ko Staric, systematics for $D^0(t) \rightarrow K^+ K^-$, $\pi^+ \pi^-$ CHARM 2012:

errors do not necessarily (or fully) scale with \mathcal{L}

source	Δy_{CP} (%)	ΔA_{Γ} (%)
acceptance	0.050	0.044
SVD misalignments	0.060	0.041
mass window position	0.007	0.009
background	0.059	0.050
resolution function	0.030	0.002
binning	0.021	0.010
sum in quadrature	0.11	0.08

D^0 - \overline{D}^0 mixing and CPV (global fit via HFAG)

10 parameters: x, y, δ , $\delta_{K\pi\pi}$, R_D , A_D , A_{π} , A_K , |q/p|, ϕ

41 observables: y_{CP} , A_{Γ} , $(x, y, |q/p|, \varphi)_{Belle K} \circ \pi^{0} \pi^{+} -$, $(x, y)_{BaBar K} \circ \pi^{0} h^{+} -$, $(R_{M})_{K\ell\nu}$, $(x'', y'')_{K} \circ \pi^{-} \pi^{0}$, $(R_{D}, x^{2}, y, \cos \delta, \sin \delta)_{\Psi(3770)}$, $(R_{D}, A_{D}, x'^{\pm}, y'^{\pm})_{BaBar}$, $(R_{D}, A_{D}, x'^{\pm}, y'^{\pm})_{Belle}$, $(R_{D}, x', y')_{CDF}$, $(R_{D}, x', y')_{LHCb}$, $(A_{CP}^{K}, A_{CP}^{\pi})_{BaBar}$, $(A_{CP}^{K}, A_{CP}^{\pi})_{Belle}$, $(A_{CP}^{K} - A_{CP}^{\pi})_{CDF}$, $(A_{CP}^{K} - A_{CP}^{\pi})_{LHCb(D})$, $(A_{CP}^{K} - A_{CP}^{\pi})_{LHCb(B \to D}^{0} \mu X)$

 $R_{M} = \frac{1}{2}(x^{2} + y^{2})$ $2 y_{CP} = \left(|q/p| + |p/q| \right) y \cos \phi - \left(|q/p| - |p/q| \right) x \sin \phi$ $2 A_{\Gamma} = \left(|q/p| - |p/q| \right) y \cos \phi - \left(|q/p| + |p/q| \right) x \sin \phi$ $x_{K^{0}\pi\pi} = x$ $y_{K^{0}\pi\pi} = y$ $|q/p|_{K^{0}\pi\pi} = |q/p|$ $\operatorname{Arg}(q/p)_{K^{0}\pi\pi} = \phi$ $\left(\frac{x''}{y''} \right)_{K^{+}\pi^{-}\pi^{0}} = \left(\frac{\cos \delta_{K\pi\pi}}{-\sin \delta_{K\pi\pi}} \frac{\sin \delta_{K\pi\pi}}{\cos \delta_{K\pi\pi}} \right) \left(\frac{x}{y} \right)$ $\left(\frac{x'}{y'} \right) = \left(\frac{\cos \delta}{-\sin \delta} \frac{\sin \delta}{\cos \delta} \right) \left(\frac{x}{y} \right)$

$$\begin{split} A_{M} &= \frac{|q/p|^{2} - |p/q|^{2}}{|q/p|^{2} + |p/q|^{2}} \\ x'^{\pm} &= \left(\frac{1 \pm A_{M}}{1 \mp A_{M}}\right)^{1/4} (x'\cos\phi \pm y'\sin\phi) \\ y'^{\pm} &= \left(\frac{1 \pm A_{M}}{1 \mp A_{M}}\right)^{1/4} (y'\cos\phi \mp x'\sin\phi) \\ \frac{\Gamma(D^{0} \to K^{+}\pi^{-}) + \Gamma(\overline{D}^{0} \to K^{-}\pi^{+})}{\Gamma(D^{0} \to K^{-}\pi^{+}) + \Gamma(\overline{D}^{0} \to K^{+}\pi^{-})} &= R_{D} \\ \frac{\Gamma(D^{0} \to K^{+}\pi^{-}) - \Gamma(\overline{D}^{0} \to K^{+}\pi^{-})}{\Gamma(D^{0} \to K^{+}\pi^{-}) + \Gamma(\overline{D}^{0} \to K^{-}\pi^{+})} &= A_{D} \\ \frac{\Gamma(D^{0} \to K^{+}\pi^{-}) - \Gamma(\overline{D}^{0} \to K^{-}\pi^{+})}{\Gamma(D^{0} \to K^{+}K^{-}) + \Gamma(\overline{D}^{0} \to K^{+}K^{-})} &= A_{K} + \frac{\langle t \rangle}{\tau_{D}} \mathcal{A}_{CP}^{\text{indirect}} \\ \frac{\Gamma(D^{0} \to \pi^{+}\pi^{-}) - \Gamma(\overline{D}^{0} \to \pi^{+}\pi^{-})}{\Gamma(D^{0} \to \pi^{+}\pi^{-}) + \Gamma(\overline{D}^{0} \to \pi^{+}\pi^{-})} &= A_{\pi} + \frac{\langle t \rangle}{\tau_{D}} \mathcal{A}_{CP}^{\text{indirect}} \\ \frac{2\mathcal{A}_{CP}^{\text{indirect}}}{\Gamma(D^{0} \to \pi^{+}\pi^{-}) + \Gamma(\overline{D}^{0} \to \pi^{+}\pi^{-})} &= A_{\pi} + \frac{\langle t \rangle}{\tau_{D}} \mathcal{A}_{CP}^{\text{indirect}} \end{split}$$

17

Now:

50 ab⁻¹:

18

Current measurements of x, y give many constraints on NP models [see Golowich et al., PRD76, 095009 (2007); 21 models considered, e.g., 2-Higgs doublets, leftright models, little Higgs, extra dimensions, of which 17 give constraints]

Now:

50 ab⁻¹:

Results:

Parameter	Now	Future (50 ab^{-1})
x (%)	$0.63^{+0.19}_{-0.20}$	± 0.08
y~(%)	0.75 ± 0.12	± 0.04
δ (°)	$22.1^{+9.7}_{-11.1}$	$\pm 3.8^{\circ}$
$R_D \ (\%)$	0.3311 ± 0.0081	± 0.003
$A_D (\%)$	-1.7 ± 2.4	± 0.70
q/p	$0.88 {}^{+0.18}_{-0.16}$	± 0.05
ϕ (°)	$-10.1^{+9.5}_{-8.9}$	$\pm 2.6^{\circ}$
A_{π}	0.36 ± 0.25	± 0.07
A_K	-0.31 ± 0.24	± 0.07

Results are conservative:

do not include $K^+\pi^-\pi^0$ and $K_SK^+K^-$ Dalitz plot analyses, $K^+I\nu$, $\psi(3770)$ results from BES III ...

Mode	\mathcal{L} [fb ⁻¹]	A _{CP} [%]	Belle II with 50 a	ab ⁻¹ [%]
$D^0 \rightarrow K^0_S \pi^0$	791	$-0.28 \pm 0.19 \pm 0.10$	± 0.05	
$D^0 ightarrow K_S^0 \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.10	
$D^0 ightarrow K^0_S \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.10	
$D^0 o \pi^+ \pi^-$	976	$0.55 \pm 0.36 \pm 0.09$	±0.07	M. Staric,
$D^0 ightarrow K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	±0.05	arXiv:1212.1975
$D^0 ightarrow \pi^+\pi^-\pi^0$	532	$+0.43\pm1.30$		
$D^0 \rightarrow K^+ \pi^- \pi^0$	281	-0.6 ± 5.3		
$D^0 ightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.8 ± 4.4		
$D^+ \to \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	± 0.05	
$D^+ \rightarrow \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	±0.20	
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	±0.20	Ka at al DDI 100
$D^+ \rightarrow K^0_S \pi^+$	977	$-0.024 \pm 0.094 \pm 0.067$	±0.05	021601 (2012);
$D^+ \rightarrow K_S^0 K^+$	977	$0.08 \pm 0.28 \pm 0.14$	± 0.10	119903 (2012)
$D_s^+ \rightarrow K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.30	
$D_s^+ \to K_S^0 K^+$	673	$+0.12\pm 0.36\pm 0.22$	± 0.10	

www.slac.stanford.edu/xorg/hfag/charm/ ICHEP12/Rare/rare_charm.html

A. J. Schwartz Workshop on Tau-Charm, Isola D'Elba Belle II Physics Prospects

24

Belle has searched for and set upper limits on 48 LFV (lepton-flavor-violating) decays, e.g., $\tau^+ \rightarrow \ell^+ \ell^+ \ell^-$

Modes are especially clean due to good lepton ID and numerous kinematic constraints.

		uee 🔪 🦯
Mode	ε (%)	UL (x10⁻ ⁸)
e ⁻ e ⁺ e ⁻	6.0	2.7
$\mu^-\mu^+\mu^-$	7.6	2.1
$e^-\mu^+\mu^-$	6.1	2.7
$\mu^-e^+e^-$	9.3	1.8
$\mu^-e^+\mu^-$	10.1	1.7
e ⁻ µ ⁺ e ⁻	11.5	1.5

Limits currently at 1-2 x 10^{-8} . Negligible background \Rightarrow ideal for Belle II

25

Another mode: $\tau^+ \rightarrow \ell^+ \gamma$ 545 fb⁻¹ Hayasaka et al., PLB 666, 16 (2008) $\tau^+ \rightarrow \mu^+ \gamma$ $\tau^+ \rightarrow e^+ \gamma$ $B < 4.5 \times 10^{-8} (90\% CL)$ (a) 0.1 0.1 0 (QeV) -0.1 ΔE (GeV) ΔE (GeV) -0.2 -0.3 -0.3-0.4 v_{τ} v_{μ} -0.4 1.75 1.85 1.65 1.7 1.8 1.75 1.65 1.7 1.8 1.85 $M_{\rm inv} \, ({\rm GeV}/c^2)$ $M_{\mu\gamma}$ (GeV/ c^2)

This level of sensitivity begins to probe models of physics beyond the SM:

τ

	reference	τ→μγ	τ→μμμ
SM + heavy Maj v_R	PRD 66(2002)034008	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	PLB 547(2002)252	10 ⁻⁹	10 ⁻⁸
SUSY SO(10)	PRD 68(2003)033012	10 ⁻⁸	10 ⁻¹⁰
mSUGRA+seesaw	PRD 66(2002)115013	10 ⁻⁷	10 ⁻⁹
SUSY Higgs	PLB 566(2003)217	10 ⁻¹⁰	10 ⁻⁷

26 **Belle II Physics Prospects** A. J. Schwartz Workshop on Tau-Charm, Isola D'Elba

Belle Upper Limits (48 LFV final states):

Belle II Prospects for τ

$$\tau^+ \rightarrow \mu^+ \gamma$$

upper half of signal ellipse dominated by $ee \rightarrow \mu\mu \gamma_{ISR}$ \Rightarrow possible to reduce \Rightarrow sensitivity scales with $\sqrt{\pounds}$

$$\tau^* \rightarrow \mu^+ \mu^+ \mu^-$$

very clean, essentially background-free up to 50 ab⁻¹ ⇒ sensitivity scales linearly with *⊥*

Upper Limits:

 $\sigma(ee \rightarrow \tau\tau) = 0.92 \text{ nb}$ $\Rightarrow 4.6 \times 10^{10} \tau^{+}\tau^{-} \text{ in 50 ab}^{-1}$ $\Rightarrow B(\tau^{+} \rightarrow \mu^{+}\gamma) < \sim 10^{-9}$ $\Rightarrow B(\tau^{+} \rightarrow \mu^{+}\mu^{-}\mu^{+}) < \sim 10^{-10}$ This probes NP models

	reference	τ→μγ	τ→μμμ
SM + heavy Maj v _R	PRD 66(2002)034008	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	PLB 547(2002)252	10 ⁻⁹	10 ⁻⁸
SUSY SO(10)	PRD 68(2003)033012	10 ⁻⁸	10 ⁻¹⁰
mSUGRA+seesaw	PRD 66(2002)115013	10 ⁻⁷	10 ⁻⁹
SUSY Higgs	PLB 566(2003)217	10 ⁻¹⁰	10 ⁻⁷

A. J. Schwartz Workshop on Tau-Charm, Isola D'Elba Belle II Physics Prospects

29

$\tau^+ \rightarrow \mu^+ \gamma$ Bckgrnd Suppression via kinematics

30

• B factories have proven to be an excellent tool for flavour physics, producing a wealth of physics results, having reliable long-term operation, and having constant improvement of performance.

• Major upgrade at KEK in 2010-16 \rightarrow Super B factory: $\angle x \, 40$. Essentially a new project, many detector components and most electronics will be replaced.

• A Super B Factory should resolve current flavor puzzles of Belle and Babar, e.g., difference in phase ϕ_1 between $b \rightarrow s$ loop diagram and $b \rightarrow c$ tree diagram; possible enhanced loop diagram in $B \rightarrow K\pi$ decays, etc.

• A Super B Factory will have a rich charm physics program: should greatly improve precision of mixing/CPV parameters, direct CP asymmetries, precision of V_{cd} , V_{cs} from semileptonic decays, decay constants f_D , f_{Ds} , reduce limits on rare and forbidden decays, measurements of charm baryons, etc.

• A Super B Factory will have a rich τ physics program; should greatly improve LFV upper limits, constraining (or discovering) new physics. Can also probe CPV in τ decays with ~3 x 10⁻⁵ precision (scaled from CLEO $\tau^+ \rightarrow K_S \pi^+ \nu$ measurement)

Back-up Slides

Decision: nano-beam option

- For high current scheme, $\xi \propto \sqrt{(\beta^*/\epsilon)} = 0.3$ looked hard (KEKB achieved 0.1)
- No solution was found for IR design to realize $\beta_x^*=20$ cm.
- Bunch length could not be reduced to 3mm because of the coherent synchrotron radiation.
- Higher operating costs.

Nano-beams design:

- Small beta function at IP (x 1/20): horiz: 1200→32/25mm vert.: 5.9→0.27/0.42mm beam size 100μm(H) x 2μm(V) → 10μm(H) x 59nm(V)
- Crab waist is considered as an option (but current KEKB machine optics diminishes impact)
- For such small β , two final-Q magnets in both L/R sides are needed
- <u>To put final-Q magnets closer to IP, increase crossing angle $22 \rightarrow 83$ mrad.</u>
- For acceptable dynamic aperture, reduce energy asymmetry to 7 GeV x 4 GeV

parameters		KEKB		SuperKEKB		unita
		LER	HER	LER	HER	units
Beam energy	Еb	3.5	8	4	7	GeV
Half crossing angle	φ	11		41.5		mrad
Horizontal emittance	εx	18	24	3.2	4.6	nm
Emittance ratio	κ	0.88	0.66	0.37	0.40	%
Beta functions at IP	β_x^*/β_y^*	1200)/5.9	32/0.27	25/0.30	mm
Beam currents	lь	1.64	1.19	3.60	2.60	А
beam-beam parameter	ξ _y	0.129	0.090	0.0881	0.0807	
Luminosity	L	2.1 x 10 ³⁴		8 x	10 ³⁵	cm ⁻² s ⁻¹

 Nano-beams and a factor of two more beam current to increase luminosity

- Large crossing angle
- Change beam energies to solve the problem of short lifetime for the LER

Rollo II Vortov Detector Unorado

Significant improvement in IP resolution:

Will improve analyses such as $B \rightarrow K_S \pi^0 \gamma$ (decay vertex determined by K_{s} and IP)

$$\begin{array}{l} C_{CP}(Ks \ \pi^{0} \gamma) = -0.07 \ \pm 0.12 \\ S_{CP}(Ks \ \pi^{0} \gamma) = -0.15 \ \pm 0.20 \ \rightarrow \ 0.09 \ (5 \ fb^{-1}) \\ \rightarrow \ 0.03 \ (50 \ fb^{-1}) \end{array}$$

36

In barrel region we will use an imaging time-ofpropagation (iTOP) counter:

- Two wide bars of quartz, 125 cm long, are epoxied together to make a "long" bar
- A spherical mirror is epoxied to the upstream end, focusing the light at the PMTs attached at the downstream end (note: the focal length is long, ~3.5m)
- An "expansion prism" is attached at the downstream end to allow the photons to spread out, improving the imaging and reducing ambiguities.
- The PMT array is attached to the expansion wedge.

Belle II Detector Upgrade – barrel particle ID

Workshop on Tau-Charm, Isola D A. J. Schwartz