PHYSICS @ τ-c: A THEORIST'S VIEW

Luca Silvestrini INFN, Rome

- Introduction
- Charm Physics
- Tau Physics
- EW & QCD
- Conclusions and Outlook

INTRODUCTION

- In the past 45 years, we (almost) always found what we expected, where we expected
- Distinguish between arguments and indirect evidence:
 - GIM: charm @ GeV
 - Unitarization of Fermi theory: NP at 10²
 GeV
 - $GSW: SU(2)_{L} \otimes U(1)_{y} \rightarrow U(1)_{Q}$ w. Higgs boson
 - KM: 3rd generation

INTRODUCTION II

- Flavour, EW fit: m₊~170 GeV
- EW fit: $m_{H} = 100 \pm 30 \, GeV$
- Now we are left with arguments only:
 - Hierarchy problem: NP close to EW scale
 - WIMP miracle: NP close to EW scale
 - gauge coupling unification: NP (SUSY) close to EW scale
- Although suprises are possible and would be very welcome, need more indirect evidence!

INTRODUCTION III

- τ-c offers great opportunities for NP searches:
 - τ flavour and CP violation
 - CPV in D mixing & decays
 - EW physics
 - dark forces
- it can also help us to:
 - reduce uncertainties in other sectors
 - make progress in understanding QCD

CPV IN D MIXING

D mixing is described by:

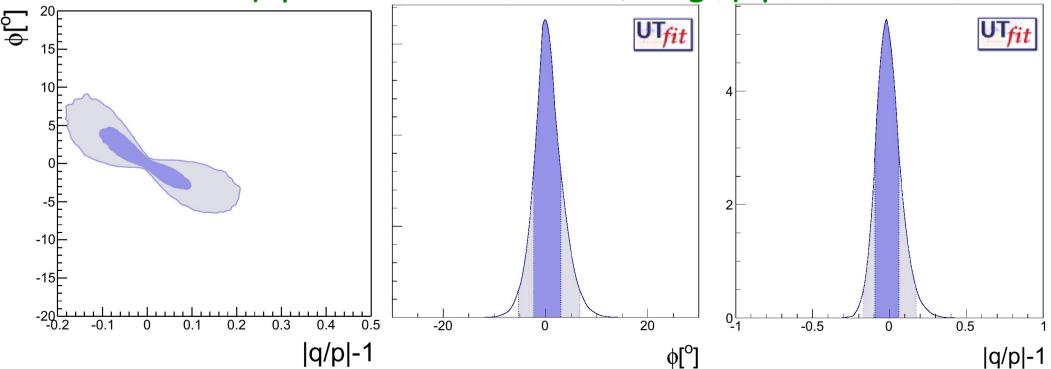
- M₁₂
- SM: long-distance dominated, not calculable (today, see lattice progress on $\Delta M_{\rm K}$) but real
- NP: short distance, calculable w. lattice
- $-\Gamma_{12}$
- SM: not calculable but real
- $-\Phi_{12} = arg(\Gamma_{12}/M_{12})$
 - Im $M_{12} = -|M_{12}| \sin \Phi_{12}$ pure NP effect See talk by A. Kagan

CPV IN D MIXING II

• Define $|D_{SL}| = p|D^0| \pm q|D^0|$ and $\delta = (1-|q/p|^2)/$ $(1+|q/p|^2)$. All observables can be written in terms of $x=\Delta m/\Gamma$, $y=\Delta\Gamma/2\Gamma$ and δ , with

$$\sqrt{2} \,\Delta m = \operatorname{sign}(\cos \Phi_{12}) \sqrt{4|M_{12}|^2 - |\Gamma_{12}|^2 + \sqrt{(4|M_{12}|^2 + |\Gamma_{12}|^2)^2 - 16|M_{12}|^2 |\Gamma_{12}|^2 \sin^2 \Phi_{12}}},$$

$$\sqrt{2} \,\Delta \Gamma = 2\sqrt{|\Gamma_{12}|^2 - 4|M_{12}|^2 + \sqrt{(4|M_{12}|^2 + |\Gamma_{12}|^2)^2 - 16|M_{12}|^2 |\Gamma_{12}|^2 \sin^2 \Phi_{12}}},$$


$$\delta = \frac{2|M_{12}||\Gamma_{12}|\sin \Phi_{12}}{(\Delta m)^2 + |\Gamma_{12}|^2},$$
(7)

- Notice that $\phi = \arg(q/p) = \arg(y + i\delta x) \arg\Gamma_{12}$
- $|q/p| \neq 1 \Leftrightarrow \phi \neq 0$ clear signals of NP Ciuchini et al; Kagan & Sokoloff

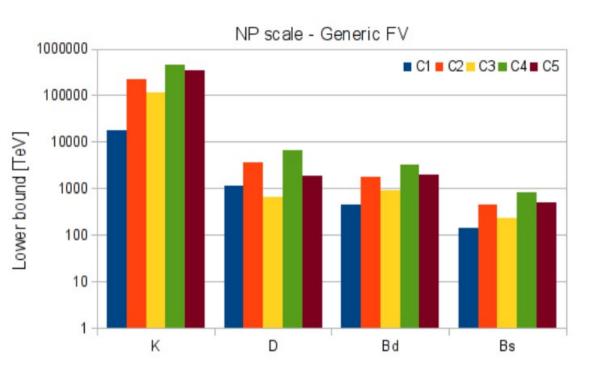
CPV IN MIXING TODAY

 updating the UTfit average with latest LHCb data we obtain:

> $x = (4.2 \pm 1.8) 10^{-3}, y = (6.4 \pm 0.8) 10^{-3},$ $|q/p|-1 = (-2 \pm 8) 10^{-2}, \phi = arg(q/p) = (0.3 \pm 2.6)^{\circ}$

CPV IN MIXING TODAY II

The corresponding results on fundamental parameters are

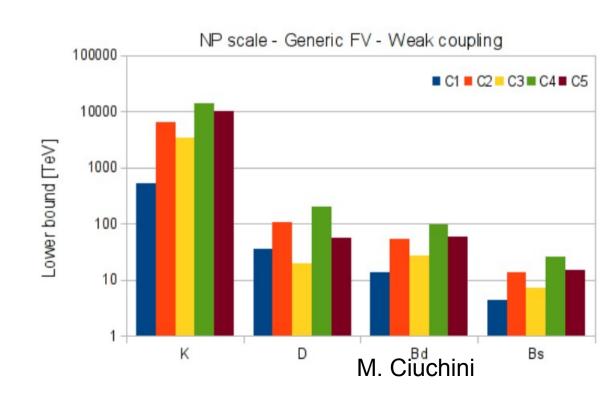

 $|M_{12}| = (5 \pm 2)/fs, |\Gamma_{12}| = (16 \pm 2)/fs,$ $\Phi_{12} = (2 \pm 11)^{\circ}$ and $|\text{Im M}_{12}| < 6/\text{fs} @ 95\%$ UTfit UTfit 100 150 .03 50 100 .02 -50 0.01 -100 -150 -0.02 0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02 0.01 -100 100 -0.010.02 $M_{12}[ps^{-1}]$ $\Phi_{12}[^{0}]$ $ImM_{12}[ps^{-1}]$

IMPLICATIONS FOR NP SCALE

• The upper bound on $|\text{Im } M_{12}|$ can be turned into a bound on the coefficients of the relevant effective Hamiltonian:

$$-H_{eff}=\sum_{i}(c_{i}/\Lambda^{2})O_{i}^{6}$$

• A lower bound of the NP scale Λ can be obtained for fixed couplings c_i , or an upper bound on the couplings c_i can be obtained for fixed NP scale Λ



Generic Flavor Violation

Non-perturbative NP $\Lambda > 4.6 \ 10^5 \ TeV$

NP in $\alpha_{\rm W}$ loops Λ > 1.4 10⁴ TeV

preliminary results

D MIXING @ SYMMETRIC e+e-

 Time-integrated decays of quantumcorrelated D-anti D pairs, with Dbar decaying in a flavour-specific final state:

 $1 - r_f \cos(\delta_f + \phi) (1 + \eta_c) y + r_f \sin(\delta_f + \phi) (1 + \eta_c) x + O(x^2, y^2), \text{ with } r_f = \overline{A}_f / A_f, \delta_f \text{ strong phase}$

• At the $\psi(4040)$ produce DD* pairs, obtain η_c =-1 for D* \to D π and η_c =1 for D* \to D γ , exploit the linear terms for η_c =1 to measure x, y, ϕ

Bondar, Poluektov & Vorobiev

D MIXING CPV REACH

Preliminary estimates by Neri&Rama @ Dec meeting:

The sensitivies to mixing and *CP* violation observables reported in Table II are based on studies considering statistical error only but Belle-II that includes also systematic uncertainties:

- $\Psi(3770)$: time-dependent analyses with a CM boost in the range of $\beta\gamma = 0.3 0.6$ and a SuperB-like vertex detector (radius of Layer0 at about 1.5 cm);
- $\Psi(4040)$: based on sensitivity studies of Bondar et al. [2] using time-integrated measurements of $D^0 \to K_S^0 \pi^+ \pi^-$ and $D^0 \to K^+ \pi^- \pi^0$;
- LHCb: based on sensitivity studies reported in [3]. Errors on x, y and $\arg(q/p)$ are based on $D^0 \to K_S^0 \pi^+ \pi^-$ and errors on |q/p| are based on Wrong-sign/Right-sign $D^0 \to K \mu \nu$.
- Belle-II: based on sensitivity studies reported in [4]. Systematic uncertainties are included. Do not include $D^0 \to K^+\pi^-\pi^0$, $D^0 \to K_S^0K^+K^-$ and $\Psi(3770)$ results from BES-III.

TABLE II: Estimated precision of mixing and CP violation observables expected at a Super τC running at $\Psi(3770)$ (3 ab⁻¹) and $\Psi(4040)$ (3 ab⁻¹) and compared with LHCb (50 fb⁻¹) and Belle-II (50 ab⁻¹) sensitivities.

Parameter	$\Psi(3770)$	$\Psi(4040)$	LHCb	Belle-II
x(%)	0.02 - 0.05	0.03	0.015	0.08
y(%)	0.02-0.03	0.03	0.010	0.04
y(%) q/p (%)	2-5	0.9	1	5
$arg(q/p)(^{\circ})$	2-3	0.8	3	2.6

See talks by Inguglia, Hahn, Schwartz, Bonivento, Sokoloff

DIRECT CPV IN SCS DECAYS

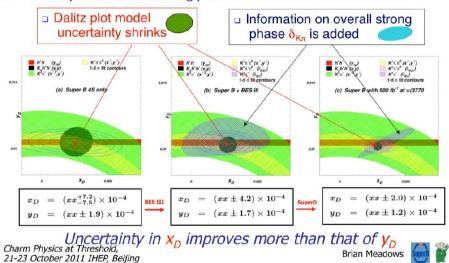
- Early evidence for large DCPV in D $\to \pi\pi$, KK now weaker, exp situation confused
- Separate measurements of $\pi\pi$ and KK asymmetries theoretically very helpful, since FSI differ \rightarrow expect different CP asymm.

Franco, Mishima & LS

· More hadronic channels would help

Talk by Meadows

• If due to enhanced chromomagnetic, interesting to measure CPV in $D{\to}V\gamma$

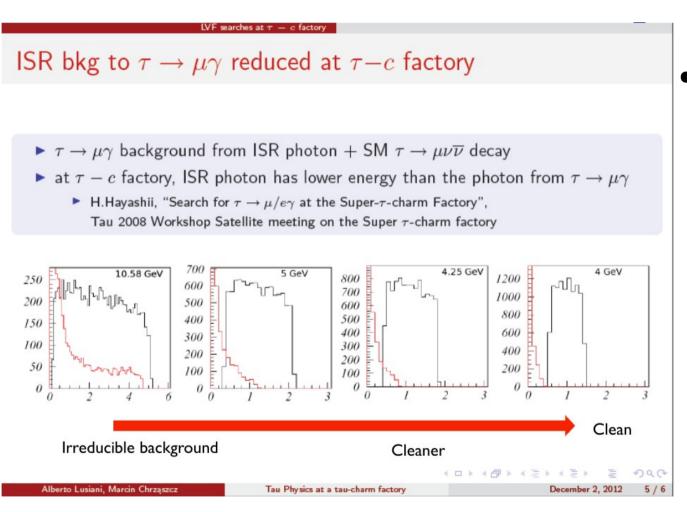

CP violation in D $\rightarrow \pi\pi$,KK

- Evidence for CP-violation puts us in the same situation as we've been in with ε' for decades: can we reliably predict the SM contribution?
 - Many challenges, both computational and theoretical
 - Hardest (still unsolved) is that, at energy M_D , 2π & 2K states mix in a finite box with 4π , 6π , etc. and need to disentangle
 - Some progress with 3π case [Hansen & SS]
- I expect progress on D \rightarrow ππ, KK on a 5 year timescale
- D-Dbar mixing is more challenging

MUCH MORE ON CHARM...

Value of Strong Phase Measurements

Two improvements in mixing precision come from threshold data:


See talks by Poluektov, Bona

· Also:

- Rare decays
- Triple products
- Majorananeutrinos

_ ..

τ LFV: $\tau \rightarrow \mu \gamma$

Removing an irreducible background is a giant step forward wrt Ψ(4s)

LFV: $\tau \rightarrow \mu \gamma$ VS OTHER

- $\tau \rightarrow \mu \mu \mu$, $\tau \rightarrow \mu ee$ generically suppressed by α , but complementary since sensitive to different contributions (e.g. boxes)
- No model-independent correlation with $\mu \to e \gamma$, so full complementarity with $\mu \to e \gamma$ searches to understand the flavour structure in the leptonic sector
- Explore LFV in production (from γ^* as well as from contact interactions)

τ BEYOND $\tau \rightarrow \mu \gamma$

- Cover full range of LFV τ decays See talk by Ghosh
- Extract useful information from hadronic τ decays: α_s , V_{us} , ... Talk by Passemar
- Test right-handed currents, lepton
 universality & other EW physics Talk by M. Roney
- Probe CPV, EDM and g-2 Talk by O. Vives

•

SEVERAL ADDITIONAL TOPICS

Charmonium spectroscopy

Talk by A. Polosa

Dark forces

Talk by M. Roney

Quantum correlations

Talk by A. Di Domenico

 \bullet Inclusive measurement of R_{had} at low

energies:

TABLE I: Contributions to $\Delta \alpha_{\rm had}^{(5)}(m_{\rm Z}^2)$

Range \sqrt{s} , GeV	$\Delta \alpha$	Relative error
ρ	0.00349	0.5 %
Narrow resonances	0.00184	3.1~%
1.05 - 2.0	0.00156	15%
2.0 - 5.0	0.00371	5.0~%
5-7	0.00183	6%
7-12	0.00304	1.4~%
> 12	0.01203	0.2~%
	0.02750	1.2 %

IMPACT OF $\Delta \alpha^5_{had}(M_Z^2)$

	Prediction	α_s	$\Delta lpha_{ m had}^{(5)}$	M_Z	m_t
M_W [GeV]	80.3625 ± 0.0085	± 0.0004	± 0.0060	± 0.0026	± 0.0054
$\Gamma_W \; [{ m GeV}]$	2.0889 ± 0.0007	± 0.0002	± 0.0005	± 0.0002	± 0.0004
$\Gamma_Z \; [{ m GeV}]$	2.4951 ± 0.0052	± 0.0003	± 0.0003	± 0.0002	± 0.0002
$\sigma_h^0 \; [ext{nb}]$	41.484 ± 0.004	± 0.003	± 0.000	± 0.002	± 0.001
$\sin^2 heta_{ ext{eff}}^{ ext{lept}}(Q_{ ext{FB}}^{ ext{had}})$	0.23149 ± 0.00012	± 0.00000	± 0.00012	± 0.00001	± 0.00003
$P_{ au}^{ m pol}=\mathcal{A}_{\ell}$	0.14725 ± 0.00094	± 0.00002	± 0.00091	± 0.00012	± 0.00022
\mathcal{A}_c	0.6680 ± 0.0004	± 0.0000	± 0.0004	± 0.0001	± 0.0001
\mathcal{A}_b	0.9346 ± 0.0001	± 0.0000	± 0.0001	± 0.0000	± 0.0000
$A_{ m FB}^{0,\ell}$	0.01626 ± 0.00021	± 0.00000	± 0.00020	± 0.00003	± 0.00005
$A_{ m FB}^{0,c}$	0.07377 ± 0.00052	± 0.00001	± 0.00050	± 0.00006	± 0.00012
$A_{ m FB}^{0,b}$	0.10322 ± 0.00067	± 0.00001	± 0.00064	± 0.00008	± 0.00016
R_ℓ^0	20.734 ± 0.044	± 0.004	± 0.002	± 0.000	± 0.000
R_c^0	0.17222 ± 0.00002	± 0.00001	± 0.00001	± 0.00000	± 0.00001
R_b^0	0.215762 ± 0.000033	± 0.000002	± 0.000004	± 0.000007	± 0.000032

Ciuchini et al

Improving error on $\Delta\alpha^{5}_{had}(M_{Z}^{2})$ crucial for TLEP

Tau-Charm 2013 Elba L. Silvestrini 20

CONCLUSIONS

- Indirect searches for NP as important as ever after the 7-8 TeV LHC runs
- Several probes of NP available at tau-charm:
 - Charm mixing CPV with high sensitivity
 - Charm decay CPV in individual channels
 - τ LFV & CPV, complementary to μ
 - EW physics
 - Dark forces

CONCLUSIONS II

- Furthermore, tau-charm can provide valuable input to NP searches in other sectors
- It can contribute to improve substantially our knowledge of QCD
- Plenty of interesting topics to be discussed in the physics parallel sessions