

Particle Identification at the PANDA Experiment

A. Sanchez Lorente on Behalf of the PANDA collaboration

La Biodola, Tau-charm Worksop, 26. May -31. May, Isola d'Elba

- > PID Detector system at PANDA
- ➤ Calorimetry
- ➤ Charged PID
- The time of flight (TOF) system
- ➢ Summary

FI MHOLTZ **PID Detector system** 08 Helmholtz-Institut Mainz **PANDA PID Requirements:** Shashlyk Calorimeter Mini Drift Chambers **Central Tracke**

р

- Particle identification essential for PANDA
- Momentum range 200 MeV/c 10 GeV/c
- Different process for PID needed

PID Processes:

- Cherenkov radiation: above 1 GeV Radiators: quartz, aerogel, C4F10
- Energy loss: below 1 GeV 0

Best accuracy with central tracker

Time of flight

Challenge: no start detector -> relative timing

- Electromagnetic showers: EMC for e and γ
 - A. Sanchez-Lorente HIM

Charged Particle Identification

- Barrel DIRC
- Barrel TOF : SciTil
- EndCap DIRC
- Forward RICH
- Forward TOF
- Muon detectors

F HELMHOLTZ

GEMEINSCHAFT Implemented PDFs for many detectors (Bayes)

Helmholtz-Institut Mainz

A.Cecchi, L.Lavezzi, R.Kunne, Y.Lang, L.Zotti/

DIRC - barrel

Detection of Internally Reflected Cherenkov light

• Different Cherenkov angles give different reflection angles

PANDA DIRC similar to BaBar

- 80 Fused silica bars, 2.5m length
- Oil tank & MCP-PMT (10k-15k pixels)
- Alternative readout: (x,y,t), mirrors, lenses
 - A. Sanchez-Lorente HIM

M. Düren, DIRC11, April 5, 2011

- Fast and small pixel detectors: SiPMs or MCPs
- Angle measurement by small focussing light guides und multi-pixel detectors
- ToP measurement by small light guides and fast photo detectors
- Dispersion handling by dichroic band pass filters

Barrel TOF : SciTil

Event timing

 Time between successive events are not equally spaced but follow a exponential distribution : avg ~ 10 ns

MHOLTZ

Helmholtz-Institut Mainz

GEMEINSCHAFT

On this time scale : all data collected to form data package

 Events 1,2,3,4,5,6,7,8... for 50Mhz interaction rate with 6 tracks

Klaus Götzen,Influence of Particle Timing on Event Building PANDA collaboration meeting March 2011, GSI

Conversion detection

PANDA has

no start detector

SciTil important for

relative timing and PID

Conversion of gammas within the DIRC can be detected with the SciTil

Choice of Scintillator Material

For subnanosecond timing: timing on first arriving photon

 \rightarrow Time resolution depends on number of photons.

Rise time comparable to wanted time resolution \rightarrow Additional smearing of first photon

Photon number

Tile 30 x 30 x 5 mm³

panda Minimum ionizing particle $\Delta E = 1 \text{ MeV}$ generated = 10⁴ photons 70% hit rim on rim = 7000 photons PD area = 18 mm^2 rim area = 600 mm^2 = 210 photons geometry 55% PD efficiency PDE = 115 photons

 $\begin{array}{c} 30 \text{ x } 30 \text{ x } 5 \text{ mm}^3 \rightarrow 115 \text{ photons} \\ 20 \text{ x } 20 \text{ x } 5 \text{ mm}^3 \rightarrow 180 \text{ photons} \end{array}$

Scintillator Tile Detector Geometry

• Low material budget :1% radiation length

- 1. Four tiles arranged with their SiPMs for densest packing:
- 2. A quad module with a R&D PCB based on 8-channel readout ASIC and a data transfer chip.

- 1. Supermodule : (3X30) 90 quad modules on top of a DIRC bar box.
- 1. Entire SciTil half barrel composed of 8 super-modules

SciTil prototypes

BC408 20 x 20 x 5 mm3

Photonique Fast amplifier 611 Hamamatsu SiPM S10931-050P S10362-33-050C

Readout NINO + HADES TRB

BC408 Coupled with BC606 Hamamatsu SiPM 2x S10931-050P 1x S10362-33-050C 1x Ketek 3x3 60A2

Photonique Slow amplifier 604 INR Moscow-Amplifier (F.Guber)

Readout NINO + HADES TRB

Forward TOF

FTOF

TOF WALL 560cm x 140cm Distance from I.P. 7m 46 slabs 140*10*2.5 cm3 20 slabs 140* 5*2.5 cm3

$$\theta_{\rm x} = \pm 10 \, \text{deg}.$$
 $\theta_{\rm y} = \pm 5 \, \text{deg}.$

TOF Side 14 slabss 100*10*2.5 cm³ SiPM

Start time resolution

S. Belostotsky et al. PANDA CM 2011

Event1 contains k tracks with $\mathbf{t}_{_{\text{stop},k}}, \mathbf{p}_k$, \mathbf{L}_k For each track $\mathbf{t}_{\text{start,ki}(k)}$ calculated under assumption $\mathbf{m} = \mathbf{m}_i$, $\mathbf{i} = \mathbf{p}, \boldsymbol{\pi}, \mathbf{k}, \boldsymbol{\mu}, \mathbf{e}$ $\min \Psi_1(t_{\text{start}}) = \sum_{k} \frac{\left(t_{\text{start}} - t_{\text{start},ki(k)}\right)^2}{\sigma_1^2}$ \Rightarrow **t**_{start} for a given combination using χ^2 distribution probability function W of a given combination calculated $\boldsymbol{\epsilon}^{\pi} = \frac{\mathbf{W}^{\pi}}{\mathbf{W}^{\pi} + \mathbf{W}^{p}}$

is built for each track

σ < 100ps !!

Probability function to be a pion for forward TOF

Proton-pion separation for FTOF and FTOF +BTOF in "pion sample"

Conclusion & Outlook

- PANDA offers a high capability Particle Identification thanks to a complete set of innovative detectors
 Physics Book arxiv:0907.0169
 - A highly granular electromagnetic calorimeter.
 - Charged particles will be identified in the low momentum region by their energy deposit and ToF, in all other momentum regions by innovative DIRC detectors.
 - Forward spectrometer to detect high-momentum particles and by surrounding muon detectors.
 - Bayesian Particle Identification \Rightarrow available, flexibility at the analysis stage
 - TOF system :Time resolution of ~100 ps seems feasible : more R&D test experiments are necessary
- Relative timing by combining barrel and forward tof provides a reliable time resolution extremely important for an event building procedure.

