Tour charm IR hayout

I.N.F.N. & Università di Pisa La Biodola 2013

- Image point of the IP 10 m downstream the IP
- QD0 and QF1 as long and weak as possible
- QD0 and QF1 as wide as possible
- I* as short as possible
- Work hypothesis PM made of Sm Co (Remnant field I.I Tesla, conservative assumption)

Quadrupoles: Halbach configuration

 r_{in} set by the beam stay clear, r_{out} set by the required gradient

$$\frac{\partial B_y}{\partial x} = 2 B_r \left(\frac{1}{r_{\rm in}} - \frac{1}{r_{\rm out}} \right)$$

Remnant Field B_r	12.2 kG	
Coercive Force H_c	11.7 kOe	
Intrinsic Coercive Force H_{ci}	23 kOe	
Maximum Energy	36 MGOe	
Recoil Permeability	1.05	
Density	7.5 g/cm^3	
Electric Resistivity	$2.0\times 10^{-4}\Omega\cdot cm$	
Temp coefficient of B_r	$-0.1 \ \%/^0 C$	
Curie Temperature	310 ⁰ C	

Table 1: Typical characteristic for NdFeB 36SH.

	r_i	r_o	Pole Field	k
	cm	cm	kG	${\rm m}^{-2}$
Front Section	3.35	6.40	9.7	1.64
Outer Section	3.35	7.04	10.7	1.81

Table 2: Quadrupole magnetic strength.

UCLA PMQ RADIA model

CESR collider final focus PMQ cross-section

First Attempt

Name	Z face (m)	$\texttt{Length}(\mathfrak{m})$	$\mathbf{G} (\mathbf{T}/\mathbf{m}) \ / \mathbf{B} \ (\mathbf{T})$	On	Туре
QD0common+	0.2	0.3	-24.9117	1	Q
QD0common-	0.2	0.3	-24.9117	2	Q
QD0+	0.55	0.2	-24.7335	1	Q
QD0+	0.75	0.2	-24.7335	1	Q
QD0+	0.95	0.15	-24.7335	1	Q
QD0-	0.55	0.2	-24.7335	2	Q
QD0-	0.75	0.2	-24.7335	2	Q
QD0-	0.95	0.15	-24.7335	2	Q
QF1+	1.2	0.1	12.6065	1	Q
QF1+	1.3	0.1	12.6065	1	Q
QF1+	1.4	0.1	12.6065	1	Q
QF1 +	1.5	0.1	12.6065	1	Q
QF1 +	1.6	0.1	12.6065	1	Q
QF1 +	1.7	0.2	12.6065	1	Q
QF1-	1.2	0.1	12.6065	2	Q
QF1-	1.3	0.1	12.6065	2	Q
QF1-	1.4	0.1	12.6065	2	Q
QF1-	1.5	0.1	12.6065	2	Q
QF1-	1.6	0.1	12.6065	2	Q
QF1-	1.7	0.2	12.6065	2	Q

<u>Stay Clear & Layout (Mike style)</u>

Tracking to the IP image point

Tracking to the IP image point

Radiation fans from the common QDO $E = \frac{\pi^3}{2} \frac{c}{\alpha^3} \approx 666 \text{ eV} 2 \text{ GeV} = 2.5 \text{ kGauss}$

-0.5

666 eV what the heck???

X-Ray Attenuation Length

Be Density=1.848, Angle=90.deg

666 eV what the heck???

X-Ray Attenuation Length

Be Density=1.848, Angle=90.deg

666 eV what the heck???

X-Ray Attenuation Length

Be Density=1.848, Angle=90.deg

Radiation fans from the QDO

Out of energy tracking

Backgrounds? Oh my gosh!! Again?

"I WISH I HAD AN ANSWER TO THAT BECAUSE I'M TIRED OF ANSWERING THAT QUESTION."

"IF YOU ASK ME ANYTHING I DON'T KNOW, I'M NOT GOING TO ANSWER."

(Voqi Berra)

How it was in SuperB?

RADIATIVE BHABHA (PRIMARIES ONLY)

PRIMARIES LOSS RATE

CONCLUSIONS

- A permanent magnet solution seems viable
 - Hard to find a solution working over a factor 4 energy span
- Synchrotron radiation doesn't seems a major problem
- The shared QD0 can <u>will</u> be a trouble maker for radiative Bhabha backgrounds
- Same configuration should be viable even with SC magnets
 - Tapered Double Panofsky (energy span?)
 - Conical double helix with local octupolar compensation
- What about anti solenoids? Do we need them?

Eugenio Paoloni

Vienna, Feb. 2012 the 9th

